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Abstract While Bayesian analogues of lasso regression
have become popular, comparatively little has been said
about formal treatments of model uncertainty in such set-
tings. This paper describes methods that can be used to eval-
uate the posterior distribution over the space of all possible
regression models for Bayesian lasso regression. Access to
the model space posterior distribution is necessary if model-
averaged inference—e.g., model-averaged prediction and
calculation of posterior variable inclusion probabilities—is
desired. The key element of all such inference is the abil-
ity to evaluate the marginal likelihood of the data under a
given regression model, which has so far proved difficult
for the Bayesian lasso. This paper describes how the mar-
ginal likelihood can be accurately computed when the num-
ber of predictors in the model is not too large, allowing for
model space enumeration when the total number of possi-
ble predictors is modest. In cases where the total number of
possible predictors is large, a simple Markov chain Monte
Carlo approach for sampling the model space posterior is
provided. This Gibbs sampling approach is similar in spirit
to the stochastic search variable selection methods that have
become one of the main tools for addressing Bayesian re-
gression model uncertainty, and the adaption of these meth-
ods to the Bayesian lasso is shown to be straightforward.
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1 Introduction

The purpose of this paper is to introduce analytic and com-
putational approaches for handling model uncertainty under
the Bayesian lasso regression model. The “Bayesian lasso”
(Park and Casella 2008; Hans 2009) typically refers to use
of the double-exponential shrinkage prior for the p-vector
of regression coefficients β in the normal linear regression
model (y | β,σ 2) ∼ N(Xβ,σ 2I ), where y is an n-vector of
observations and X is an n × p matrix of predictor vari-
ables. Shrinkage priors play an important role in Bayesian
regression modeling, especially when the number of possi-
ble predictor variables is large. Within the class of shrink-
age priors for β , scale mixtures of normal distributions (An-
drews and Mallows 1974; West 1987) have received exten-
sive attention. The trivial one-component mixture prior for
β was used by Raiffa and Schlaifer (1961), and Zellner and
Siow (1980) considered a Cauchy prior, which can be rep-
resented as a mixture. A variety of scale-mixture priors for
β have been investigated more recently by Fernández and
Steel (2000), Griffin and Brown (2005, 2007, 2009), Liang
et al. (2008) and Carvalho et al. (2008).

The particular scale-mixture of normals shrinkage prior
for β that underlies Bayesian lasso regression is the double-
exponential distribution. Study and use of the double-
exponential prior distribution in regression problems have
become popular in part due to connections to the lasso pro-
cedure of Tibshirani (1996): the posterior mode under the
double-exponential prior is equivalent to the lasso estimate,
β̂ . A salient feature of β̂ is that it is possible that β̂j = 0
for each j = 1, . . . , p, providing a method for identifying
important predictor variables and improving on prediction
when p is large. This “variable selection” property, though,
is ad hoc from a Bayesian perspective. Under the absolutely
continuous double-exponential prior distribution, the prior
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probability of the event {βj = 0} is zero, and so the poste-
rior probability of such an event must also be zero. In order
for posterior inferences about events such as {βj = 0} to be
coherent, prior probability mass must be allocated to these
events.

In the Bayesian setting, placing prior mass on the events
{βj = 0} is akin to assigning a prior distribution to the space
of regression models that are to be considered. Using stan-
dard notation, let γ be a p-vector where γj = 1 if predictor
variable xj is included in the regression model and γj = 0
otherwise. If the prior probability of a particular model is
π(γ ), the posterior probability of the regression model is

π(γ | y) = mγ (y)π(γ )
∑

γ ′∈� mγ ′(y)π(γ ′)
, (1)

where � is the collection of all possible models and

mγ (y) =
∫

N(y | Xγ βγ ,σ 2In) π(βγ , σ 2 | γ ) dβγ dσ 2 (2)

is the marginal likelihood of the observed data under
model γ . In this notation N(y | ·, ·) is the density func-
tion for a normal random variable evaluated at y, Xγ is
the matrix of predictor variables corresponding to model γ ,
βγ is the vector of regression coefficients corresponding
to model γ and π(βγ ,σ 2 | γ ) is the prior distribution
for the parameters in model γ . Important predictor vari-
ables can be identified by examining the marginal poste-
rior inclusion probabilities π(γj = 1 | y). If selection of
one model for prediction is desired, Barbieri and Berger
(2004) provide conditions under which the median proba-
bility model—defined to be the model containing all vari-
ables with π(γj = 1 | y) ≥ 1/2—provides Bayes-optimal
predictions, and suggest that their approach might be suc-
cessful even when the conditions are not met. A commonly
used approach is to base predictions on the highest poste-
rior probability model, however such predictions are not al-
ways Bayes optimal. Other methods for choosing variables
or models can be constructed using decision theoretic argu-
ments (e.g. Bernardo and Smith 2000, Chap. 6). Knowledge
of (or access to) the posterior distribution π(γ | y) is re-
quired for all of these approaches.

The two major difficulties that arise when addressing re-
gression model uncertainty in this manner are the evaluation
of the integral in (2) for a given prior π(βγ ,σ 2 | γ ) and the
ability to compute the summation in (1) for even moderately
sized p. Both issues are a concern for the Bayesian lasso,
and various approximations and alternative approaches have
been used to avoid them. For example, Yuan and Lin (2005)
avoid evaluating all 2p marginal likelihoods in a search for
the highest posterior probability model under their formula-
tion of the Bayesian lasso by carefully restricting the para-
meters of their model to lie in a particular hyperplane. This

allowed them to focus on a smaller subset of possible re-
gression models, the marginal likelihoods of which they ap-
proximated using a Laplace approximation. While this ap-
proach provides a quick method for finding a high proba-
bility model, it does not address broader questions related
to model uncertainty: because emphasis is placed on find-
ing a single model, functionals of the model space posterior
distribution—e.g., model-averaged predictions and variable
inclusion probabilities—cannot be evaluated. Additionally,
the restrictions placed on key parameters preclude a full
Bayesian treatment of the model under this approach.

This paper introduces the tools that are required for ad-
dressing model uncertainty for Bayesian lasso regression.
After a review of the Bayesian lasso regression model in
Sect. 2, Sect. 3.1 describes how the marginal likelihood
can be accurately evaluated when the model size is not too
large, allowing for enumeration of the model space poste-
rior distribution (1) when the total number of predictors p

is modest. When p is large and we wish to consider models
with moderate to large numbers of predictors, direct calcu-
lation of (1) and (2) will not be feasible. For these cases,
a simple Markov chain Monte Carlo (MCMC) method for
providing samples from (1) is described in Sects. 3.3–3.4.
Model-averaged inference and prediction can be easily ac-
complished using the output from this Gibbs sampler. All
computations described in this paper were implemented on
a Mac Pro running Mac OS 10.6.1 with 8 GB of memory and
dual 2.66 GHz quad-core Intel Xeon processors. The model
space enumeration methods described in Sect. 3.1 were im-
plemented in R (R Development Core Team 2009), and the
MCMC methods described in Sects. 3.3 and 3.4 were imple-
mented in the C++ programming language.

2 The Bayesian lasso regression model

In this section we briefly review the Bayesian lasso regres-
sion model in order to provide the proper context for the new
material on model uncertainty presented in Sect. 3. Park and
Casella (2008) consider the Bayesian lasso regression model

y | β,σ 2 ∼ N(Xβ,σ 2In),

βj | σ 2, τ
iid∼ DE(τ/σ ), j = 1, . . . , p,

where DE(τ/σ ) is the double-exponential distribution with
density function

p(βj | τ, σ 2) = τ

2σ
e−τ |βj |/σ . (3)

Throughout, we assume that y and the columns of X have
been demeaned, and so an intercept term is not included in
the model (although one could be easily accommodated).
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For now we assume that σ 2 and τ are known values, how-
ever this will be relaxed later. For a given model γ with kγ

predictor variables, the key to assessing model uncertainty
is the ability to evaluate

mγ (y | σ 2, τ )

=
∫

N(y | Xγ βγ ,σ 2In)π(βγ | σ 2, τ )dβγ

=
∫

(2πσ 2)−n/2e
− 1

2σ2 (y−Xγ βγ )T (y−Xγ βγ )

×
( τ

2σ

)kγ

e−τ‖βγ ‖1/σ dβγ , (4)

where ‖β‖1 is the L1-norm of β .
Most of the study and application of the Bayesian lasso

regression model (Fernández and Steel 2000; Park and
Casella 2008; Yi and Xu 2008) has focused on the scale
mixture of normals representation of the double-exponential
distribution, where latent variables are used to create a hi-
erarchical representation of the prior distribution. This for-
mulation of the model admits a simple Gibbs sampler for
obtaining draws from the posterior distribution of β for a
fixed model, however it does not lead to a simple expression
for the marginal likelihood. Rather than working with the
scale-mixture representation, we consider the direct repre-
sentation of the posterior distribution of β provided by Hans
(2009), which will facilitate both calculation of the marginal
likelihood (Sect. 3.1) and computational approaches for ad-
dressing model uncertainty (Sect. 3.3).

By breaking the density function for the double-
exponential distribution (3) into separate positive and nega-
tive components, Hans (2009) shows that for a given set of
p ≤ n predictor variables, the posterior distribution of β is a
mixture of orthant-specific normal distributions:

π(β | σ 2, τ, y) =
∑

z∈Zp

ωz N[z](β | μz , σ 2(XT X)−1). (5)

The sum is taken over the set Zp = {−1,1}p which repre-
sents the 2p orthants of R

p . The orthant corresponding to a
given z ∈ Zp is defined to be Oz = Rz1 × · · · × Rzp where
Rzj

is [0,∞) if zj = 1 and is (−∞,0) if zj = −1. Each
term in the sum contains a normalized density function for a
normal distribution restricted to lie in a particular orthant:

N[z](β | m,S) ≡ N(β | m,S)

P(z,m,S)
1(β ∈ Oz),

where P(z,m, s) =
∫

Oz

N(t | m,S)dt.

The location vector for each term in the sum depends on the
orthant: μz = β̂OLS − τσ (XT X)−1z, where β̂OLS is the least-
squares estimate (XT X)−1XT y. Each term in (5) also con-

tains a weight,

ωz = ω−1 P(z,μz, σ
2(XT X)−1)

N(0 | μz, σ 2(XT X)−1)
,

where ω =
∑

z∈Zp

P(z,μz, σ
2(XT X)−1)

N(0 | μz, σ 2(XT X)−1)
,

which makes (5) a properly normalized density function.
When p > n one cannot represent the density function

of the posterior distribution as in (5). In this case, the sur-
face of the likelihood (as a function of β) will be flat in a
p − n dimensional subspace, meaning that on this subspace
the posterior distribution will have exponential tails (due to
the prior distribution). Along any direction that does not lie
in this subspace, the posterior will have normal tails, as it
does in (5). While this complicates the writing of an expres-
sion for the posterior density function, it will not cause prob-
lems for addressing model uncertainty via the computational
methods described in Sects. 3.3 and 3.4.

3 Addressing model uncertainty

3.1 Marginal likelihood

The results of Hans (2009)—which provide expression (5)
for the posterior distribution of β for a given model—are
extended in this section to provide a new, simple expression
for the marginal likelihood. Breaking integral (4) into a sum
of integrals over each orthant reveals that the marginal like-
lihood for a particular model γ is

mγ (y | σ 2, τ ) = ωγ

( τ

2σ

)kγ

N(y | 0, σ 2In), (6)

where kγ = ∑p

l=1 γl is the number of variables included in
model γ and ωγ is the same as ω but computed using only
those predictor variables in model γ :

ωγ =
∑

z∈Zkγ

P(z, (XT
γ Xγ )−1(XT

γ y − τσz), σ 2(XT
γ Xγ )−1)

N(0 | (XT
γ Xγ )−1(XT

γ y − τσz), σ 2(XT
γ Xγ )−1)

.

(7)

When kγ = 0, ωγ is defined to be one. As in Sect. 2, ex-
pression (6) only holds if kγ ≤ n. Computing the marginal
likelihood for a model γ is easy if the model size is not
too large: computing ωγ for a model of size kγ only re-
quires evaluating 2kγ kγ -dimensional multivariate normal
orthant integrals, which can be evaluated numerically with
high accuracy (e.g. Genz 1992). If kγ is large, computa-
tion of ωγ is difficult. Increasing the value of kγ increases
both (i) the number of integrals that must be evaluated and
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Table 1 Posterior marginal inclusion probabilities for the diabetes
data example. “ML” refers to direct computation of mγ (y | σ 2, τ )

or mγ (y | τ) using equation (6); “MCMC” refers to estimation of
the probabilities based on 1,500,000 iterations of the appropriate

Gibbs sampler. When the parameters are not fixed, they have priors
π(σ 2) = σ−2, τ ∼ Gamma(1,1) and ρ ∼ Unif(0,1). The horizontal
lines in the table separate different models. Run times are provided in
minutes; the run time for * was 5.62 hours

Fixed Parameters Method AGE SEX BP S1 S2 S3 S4 S6 Time

σ 2 = 1, τ = 4.25, ML .192 .776 .983 .519 .372 .696 .402 .251 8.57

ρ = 0.5 MCMC .192 .775 .983 .560 .372 .695 .401 .251 1.32

σ 2 = .492, τ = 4.25, ML .191 .991 1.000 .658 .435 .797 .473 .307 8.19

ρ = 0.5 MCMC .191 .991 1.000 .658 .436 .796 .473 .307 1.39

τ = 4.25, ρ = 0.5 ML .191 .987 1.000 .650 .432 .795 .470 .304 *

MCMC .191 .990 1.000 .660 .435 .793 .476 .307 1.51

ρ = 0.5 MCMC .130 .989 1.000 .659 .429 .696 .414 .217 1.52

MCMC .381 .995 1.000 .816 .658 .781 .651 .503 1.72

(ii) the dimension of the integrals. The increase associated
with (i) eventually results in unreasonably long compute
times, while the increase associated with (ii) eventually re-
sults in inaccurate estimates of each integral and, conse-
quently, an inaccurate estimate of ωγ . If the total number of
predictors, p, is not too large, all 2p posterior model prob-
abilities π(γ | σ 2, τ, y) can be accurately computed for a
given prior π(γ ), allowing for model averaged inference.
The “large p” scenario is considered in Sect. 3.3.

As an example, consider the diabetes dataset of Efron
et al. (2004), which consists of measurements on n = 442
patients with diabetes. The response variable—a one-year
measure of disease progression—is to be predicted using
the information in p = 10 clinical covariates. The predic-
tor variables xj and the outcome variables y have been de-
meaned and then standardized to have unit sample variance.
The marginal likelihoods mγ (y | σ 2, τ ) for all 1,024 mod-
els were computed twice, once while fixing σ 2 = 1 (an esti-
mate of the residual variance under the null model) and once
while fixing σ 2 = 0.492 (an estimate of the residual variance
under the full model). The fixed value τ = 4.25 was used
in all calculations and was chosen because it represents a
reasonable amount of penalization for this dataset. The mar-
ginal likelihoods were then converted into posterior proba-
bilities π(γ | y,σ 2, τ ), where the prior distribution on the

model space was specified so that γj
iid∼ Bernoulli(ρ = 0.5).

Under this prior, all models are a priori equally likely.
The purpose of this example is not to attempt a sophisti-

cated analysis of the data, but rather to illustrate that these
calculations are feasible for a dataset with p = 10. The
posterior probabilities computed here will be compared, in
Sect. 3.3, to an MCMC approach designed to estimate the
same probabilities. Agreement of the probabilities computed
using both approaches is an indication that accurate calcula-
tions can be made using either method.

The first and third rows of Table 1 show the poste-
rior variable inclusion probabilities π(γj = 1 | y,σ 2, τ ) for
eight of the ten variables. The two missing variables, BMI
and S5, had inclusion probabilities of approximately 1.000
across all rows of the table, and so they are not displayed.
The time required to compute all 1,024 marginal likelihoods
was just over eight minutes, a reasonable amount of time for
a one-time computation. Roughly speaking, under both fixed
values of σ 2, there is strong evidence that BMI, BP and S5
are important predictors, moderate evidence for S3 and S1,
and weaker evidence for S4, S2, S6 and AGE. There is also
fairly strong evidence that SEX is an important predictor, es-
pecially when σ 2 is fixed at 0.492. Except for AGE, the vari-
able inclusion probabilities are all higher under the model
where σ 2 = 0.492, which is not surprising as this value of
σ 2 is an estimate of residual variation under the full model.

In general, it is not desirable to condition on a particu-
lar value of σ 2. Different values of σ 2 represent different
amounts of residual variation, which in turn can correspond
to different regions of the model space. When σ 2 is un-
known and given a prior distribution π(σ 2), the marginal
likelihood becomes mγ (y | τ) = ∫

mγ (y | σ 2, τ )π(σ 2)dσ 2.
Due to the complicated way in which σ 2 appears in (6)
through the term ωγ , an analytic solution to this integral for
standard choices of π(σ 2) is not obvious. Fortunately, the
integral is one dimensional, and standard techniques can be
used to evaluate the integral numerically. Such techniques
typically require repeated evaluations of mγ (y | σ 2, τ ) at
many different values of σ 2, which is feasible if kγ is not too
large. Applying this approach to the diabetes dataset using
the prior π(σ 2) ∝ σ−2 (propriety of the posterior was shown
by Park and Casella 2008), the calculation of all 1,024 mar-
ginal likelihoods took over five hours. The fifth row of Ta-
ble 1 shows the resulting posterior marginal inclusion prob-
abilities. The results will be compared, in Sect. 3.4, to an
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Fig. 1 The left panel displays the logarithm of the time required
(in minutes) to compute the marginal likelihood for models of sizes
k = 1, . . . ,18. The right panel displays the logarithm of the time re-

quired (in minutes) to enumerate the model space as the total number
of candidate predictor variables increases from p = 1 to p = 13

MCMC approach for estimating the same quantities that re-
quires much less computing time.

3.2 Computational limitations

Our ability to compute a single marginal likelihood mγ (y |
σ 2, τ ) in a reasonable amount of time depends on the size
of model, as computation of ωγ requires the evaluation of
2kγ ratios as in (7). Assuming that the bulk of the comput-
ing time is spent computing these ratios, the logarithm of the
time required to compute a marginal likelihood should scale
approximately linearly in kγ . The practical extent of this
limitation was examined using the diabetes dataset. Start-
ing with the model containing only the predictor AGE, vari-
ables were added to the model one at a time, and the time
required to compute the marginal likelihood for each model
in this sequence was recorded. When the ten variables in the
dataset were exhausted, white-noise predictors were added
until a total of 18 variables were in the model. The left
panel of Fig. 1 displays the logarithm of the time required
(in minutes) to make these calculations, which scales ap-
proximately linearly in kγ as expected. It took less than one
minute to compute mγ (y | σ 2, τ ) for models with kγ ≤ 10,
forty minutes for a model of size kγ = 15 and six hours for a
model of size kγ = 18. Computation of the multivariate nor-
mal probabilities in (7) was performed using the R package
mvtnorm (Genz et al. 2009).

Our ability to enumerate the model space in a reason-
able amount of time depends on the total number of predic-
tor variables p. To enumerate the space, 2p marginal like-

lihoods must be computed, and for a given model of size
kγ , 2kγ ratios must be computed as in (7). This means that∑p

k=0

(
p
k

)
2k = 3p ratios must be computed in order to enu-

merate the model space. Again assuming that computation
of these ratios dominates the total time required to com-
pute a marginal likelihood, the logarithm of the time re-
quired to enumerate the model space should scale approx-
imately linearly in p. The practical extent of this limitation
on model space enumeration was examined in the same way
as above by constructing a nested sequences of model spaces
for p = 1, . . . ,13; this time, instead of computing a single
marginal likelihood, all 2p marginal likelihoods were com-
puted for each p. The right panel of Fig. 1 displays the loga-
rithm of the time required (in minutes) to make these calcu-
lations, which is approximately locally linear in p. Model
space enumeration can be done in less than a minute for
p ≤ 8, in about thirty minutes for p = 11, two hours for
p = 12 and nine hours for p = 13. Extrapolating, for this
example it would take between one and two days to enu-
merate a model space with p = 14.

3.3 Model uncertainty in higher dimensions

As seen above, computation of the marginal likelihood is in-
tractable in practice for large values of kγ , and model space
enumeration is difficult when p is larger than 12 or 13. Addi-
tionally, if p > n we can only use expression (6) to compute
the marginal likelihood of models of size kγ ≤ n. We can,
however, construct a simple Gibbs sampler which will allow
us to obtain samples from the posterior distribution of γ ,
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providing a computational approach for addressing model
uncertainty for the Bayesian lasso regression model that can
be used for any number of predictor variables. Assuming

that γj | ρ
iid∼ Bernoulli(ρ), the prior distribution for βj can

be written as the mixture

π(βj | σ 2, τ, ρ) = (1 − ρ)δ0(βj ) + ρ
( τ

2σ

)
e−τ |βj |/σ , (8)

where δ0(βj ) is a point mass at zero. The case where a nor-
mal distribution is used in place of the double-exponential
distribution has been studied extensively; different forms
of that prior distribution and various computational treat-
ments for related priors have been considered by George and
McCulloch (1993, 1997), Carlin and Chib (1995), Geweke
(1996), Smith and Kohn (1996), Raftery et al. (1997) and
Kuo and Mallick (1998), among others.

Using the mixture representation (8) of the prior, an it-
eration of the Gibbs sampler cycles through the full condi-
tional distributions βj | β−j , σ

2, τ, y, j = 1, . . . , p, where
β−j contains all elements of β except for βj . Separating the
portion of (8) corresponding to the double-exponential dis-
tribution into separate positive and negative components, the
full conditional distribution of βj is revealed to be a mixture
with two components:

π(βj | β−j , σ
2, τ, y)

= φ0j δ0(βj ) + (1 − φ0j )
{
φj N+(βj | μ+

j , s2
j )

+ (1 − φj )N
−(βj | μ−

j , s2
j )

}
. (9)

The first component is a point mass at zero with correspond-
ing weight

φ0j ≡ Pr(βj = 0 | β−j , σ
2, τ, ρ, y)

=
[

1 + ρ

1 − ρ
× τ

2σ

{
�(μ+

j /sj )

N(0 | μ+
j , s2

j )

+ �(−μ−
j /sj )

N(0 | μ−
j , s2

j )

}]−1

,

where � is the univariate standard normal distribution func-
tion. The parameters of this weight are s2

j = σ 2/(xT
j xj ) and

μ+
j = (xT

j xj )
−1{xT

j (y − X−jβ−j ) − τσ/(xT
j xj )}, where

X−j is the matrix X with the j th column removed. Some
elements of β−j may be equal to zero, allowing for the
possibility of a computational speed up when computing
(xT

j X−j )β−j . The parameter μ−
j is the same as μ+

j , with the

exception that −τσ/(xT
j xj ) is replaced with +τσ/(xT

j xj ).
The second component of the mixture in (9) has weight

1 − φ0j and is itself a mixture with two components: a nor-
mal distribution restricted to be positive (with weight φj )
and a normal distribution restricted to be negative (with

weight 1 − φj ). In the notation above, N+ and N− are the
univariate truncated normal distributions with density func-
tions

N+(t | m,s2) = N(t | m,s2)

�(m/s)
1(t > 0) and

N−(t | m,s2) = N(t | m,s2)

�(−m/s)
1(t < 0),

and the weight in favor of the positive component is

φj =
{

�(μ+
j /sj )

N(0 | μ+
j , s2

j )

}

/
{

�(μ+
j /sj )

N(0 | μ+
j , s2

j )
+ �(−μ−

j /sj )

N(0 | μ−
j , s2

j )

}

.

An alternate view of (9) is that the full conditional distrib-
ution is a three component mixture: a point mass at zero, a
positive normal distribution and a negative normal distribu-
tion with weights φ0j , (1 − φ0j )φj and (1 − φ0j )(1 − φj ),
respectively, which sum to one.

The computational advantage of this Gibbs sampling ap-
proach over direct calculation of the marginal likelihood
(6) is evident in the form of the full conditional distrib-
ution. Rather than having to compute 2kγ kγ -dimensional
multivariate normal orthant probabilities, sampling from
the full conditional requires computation of only two one-
dimensional normal probabilities, which can be done
quickly and with high accuracy. Additionally, Rao–Black-
wellized estimates of the posterior variable inclusion proba-
bilities are easily obtained by averaging the values of 1−φ0j

across MCMC iterations for each variable.
The Gibbs sampler was implemented for the diabetes

dataset under the conditions τ = 4.25 and ρ = 0.5. The fixed
values σ 2 = 1 and σ 2 = .492 were both considered, and two
separate runs of length 1,500,000 were performed. The val-
ues obtained using the MCMC approach (see Table 1) match
very well with those obtained in Sect. 3.1 based on direct
calculation of the marginal likelihoods (6), providing con-
fidence that both methods can produce stable and accurate
answers. The MCMC approach, however, produced the re-
sults in less time.

3.4 MCMC when σ 2, τ and ρ are unknown

As discussed in Sect. 3.1, fixing σ 2 at a particular value is
undesirable, especially when multiple models are to be com-
pared. The same is true for τ , the penalty parameter, and ρ,
the hyperparameter controlling the number of zeroed-out re-
gression coefficients. In particular, Scott and Berger (2008)
show that fixing ρ in seemingly reasonable ways can provide
unsatisfactory results as p grows large. A better approach is
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to assign these parameters prior distributions and add extra
steps to the Gibbs sampler to update them from their full
conditional distributions.

A common choice of prior for the residual variance is
σ 2 ∼ IG(a, b), the inverse gamma distribution. The limiting
case a → 0 and b → 0 yields the improper prior π(σ 2) =
σ−2. Under this prior, the density function for the full con-
ditional distribution is

π(σ 2 | β, τ, y) ∝ (σ 2)−(a∗+1) exp(−b∗/σ 2 − τ‖β‖1/σ),

where a∗ = (n + kγ )/2 + a, kγ is the number of nonzero
elements of β and b∗ = (y − Xβ)T (y − Xβ)/2 + b. This is
not a standard distribution, however samples can be obtained
via a rejection sampling method after a suitable transforma-
tion has been applied (see Hans 2009, for details). The sixth
row of Table 1 displays MCMC estimates of the marginal
variable inclusion probabilities for the diabetes data when
π(σ 2) = σ−2, τ = 4.25 and ρ = 0.5. The estimates match
fairly well with those in the fifth line, obtained via numeri-
cal integration of mγ (y | σ 2, τ ) in Sect. 3.1. Experience with
MCMC for similar models suggests that the MCMC-based
estimates should be accurate, and so the discrepancies are
likely due to the numerical integration procedure. It is en-
couraging, though, that when τ and ρ are fixed, marginal
likelihoods mγ (y | τ) can be computed with relatively high
accuracy without needing to resort to MCMC. Note, how-
ever, that the MCMC approach required only 1.5 minutes,
compared to 5.62 hours for the model space enumeration
using numerical integration.

A reasonable prior distribution for the penalty parame-
ter is τ ∼ Gamma(r, s). Under this prior, the resulting full
conditional distribution is

τ | β,σ 2, y ∼ Gamma(kγ + r, σ−1‖β‖1 + s),

where again kγ is the number of nonzero elements of β .
The seventh row of Table 1 displays MCMC estimates
of the marginal inclusion probabilities for the diabetes
data when σ 2 is modeled as above, τ is assigned the
Gamma(1,1) prior distribution, and ρ is fixed at 0.5. The
probabilities are, in general, slightly lower when uncertainty
about τ is averaged over, suggesting the posterior has moved
slightly toward smaller-sized models.

A commonly used prior distribution for the sparsity para-
meter is ρ ∼ Beta(g,h). See George and McCulloch (1993,
1997), George and Foster (2000), Chipman et al. (2001),
Kohn et al. (2001), Ley and Steel (2007), Cui and George
(2008) and Scott and Berger (2008) for various treatments
and discussion of this important parameter. Under the beta
prior distribution, the full conditional distribution is

ρ | β,σ 2, τ, y ∼ Beta(g + kγ ,h + p − kγ ).

The final row of Table 1 displays MCMC estimates of the
marginal inclusion probabilities for the diabetes data when
ρ ∼ Beta(1,1) (the uniform distribution) and σ 2 and τ are
modeled as above. The posterior probabilities under this
more general model are much higher than they were under
the previous models, suggesting that the data support larger
models than those favored by the prior with ρ = 0.5; in-
deed, the posterior mean of ρ is E[ρ | y] = 0.732. The usual
Bayesian point estimates for σ 2 and τ under this model are
E[σ 2 | y] = 0.493 and E[τ | y] = 2.93.

3.5 Additional approaches to model space MCMC

The MCMC algorithms described above construct Markov
chains over the joint parameter and model spaces, requiring
that a sample of β be obtained at each iteration. An alternate
approach to regression model space MCMC, described by
Smith and Kohn (1996) and George and McCulloch (1997),
constructs a Markov chain directly on the model indicator
γ by marginalizing over β . Given fixed values of σ 2, τ and
ρ, one iteration of this MCMC algorithm for the Bayesian
lasso regression model cycles through the full conditional
distributions γj | γ−j , σ

2, τ, ρ, y, where

Pr(γj = 1 | γ−j , σ
2, τ, y)

=
(

1 + 1 − ρ

ρ
× mγ0(y | σ 2, τ )

mγ1(y | σ 2, τ )

)−1

,

mγ1(y | σ 2, τ ) is the marginal likelihood for the model with
γ−j fixed as indicated in the conditioning statement and
γj = 1, and mγ0(y | σ 2, τ ) is the marginal likelihood for
the same model, but with γj = 0. The advantage of con-
structing a Markov chain in this fashion is that β is never
sampled, which may result in faster convergence to the tar-
get distribution π(γ | y,σ 2, τ, ρ). The main disadvantage to
using this approach in the Bayesian lasso setting is that be-
cause computing the marginal likelihood for large models
can take an unreasonable amount of time, the time required
to complete a cycle of the sampler will increase greatly as
the Markov chain transitions to models with large numbers
of predictor variables. Constructing a Markov chain over the
entire model space in this fashion is not feasible unless the
total number of predictor variables, p, is small, in which
case model space enumeration can be accomplished as in
Sect. 3.1.

It is sometimes the case, especially when p is very large,
that investigators are not interested in the entire space of 2p

models and that, instead, interest is on the subspace where
model size is restricted to be no larger than a small num-
ber k∗. The restriction on the model space can be encoded
in the prior via a constraint: π(γ ) ∝ ρkγ (1 − ρ)p−kγ 1(kγ ≤
k∗). With this cap on model size in place, MCMC over the
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restricted space is feasible; however, experience with this
approach for the Bayesian lasso regression model suggests
that even when k∗ is small (≈ 6) and p is not too large
(≈ 100), the potential gains obtained by not sampling β are
outweighed by the increased computational costs.

4 Discussion and extensions

This paper introduced the necessary tools for addressing
regression model uncertainty for the Bayesian lasso. The
marginal likelihood was seen to be accurately computable
when the number of predictor variables is modest, allow-
ing for model space enumeration and model-averaged infer-
ences. When the number of predictor variables is large, it
was shown that functionals of the model space posterior dis-
tribution could be accurately estimated using a simple Gibbs
sampler, the form of which is similar to the stochastic search
variable selection (SSVS) samplers that are now widely used
for large p regression problems.

When p is very large, the MCMC algorithms described
in Sect. 3.3 will encounter the same problems that the ex-
isting SSVS methods encounter. In these cases, the model
space is so large that all models cannot be visited by the
MCMC algorithm, meaning that estimates of model proba-
bilities π(γ | y) cannot be accurately obtained. It is often the
case, though, that the regions of high posterior probability
will be visited sufficiently often that estimates of quantities
such as π(γj = 1 | y) will be reasonably accurate. In this
case, the MCMC method described in Sect. 3.3 can be used
as a screening method to identify the important predictors.

Computation of the marginal likelihood (6) can be
speeded up by noting that each element of the sum that de-
fines ωγ can be computed independently in parallel. This
makes use of the double-exponential prior particularly ap-
plicable to parallel computing based stochastic search al-
gorithms such as the SSS approach of Hans et al. (2007)
that seek to explore the space of low dimensional regres-
sion models. Such methods aim to rapidly explore and cat-
alogue neighborhoods of high probability models that can
be used to perform approximate model-averaged inference.
The methods introduced in Sect. 3 make it feasible to use the
double-exponential prior in conjunction with such search al-
gorithms.

Software for implementing the methods described in
Sect. 3, written in C++ with an R package interface, is avail-
able at http://www.stat.osu.edu/~hans/software.html.
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