Introduction to STA721

Merlise Clyde (clyde@duke.edu)

Duke University

[https://sta721-F24.github.io/website/](https://sta721-f24.github.io/website/)

Introduction to STA721

- Course: Theory and Application of linear models from both a frequentist (classical) and Bayesian perspective
- Prerequisites: linear algebra and a mathematical statistics course covering likelihoods and distribution theory (normal, t, F, chi-square, gamma distributions)
- Introduce R programming as needed in the lab
- Introduce Bayesian methods, but assume that you are co-registered in 702 or have taken it previously
- more info on Course website [https://sta721-F24.github.io/website/](https://sta721-f24.github.io/website/)
	- schedule and slides, HW, etc
	- critical dates (Midterms and Finals)
	- office hours
- Canvas for grades, email, announcements

Please let me know if there are broken links for slides, etc!

Notation

- scalors are a (italics or math $|$ talics)
- vectors are in bold lower case, **a**, with the exception of random variables
- all vectors are column vectors

talics)
\nthe, **a**, with the exception of random variables
\n
$$
\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}
$$
\n
$$
\mathbf{a} = ||\mathbf{a}||^2 = \sum_{i=1}^n a_i^2; \langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}
$$

- $\mathbf{1}_n$ is a $n \times 1$ vector of all ones
- \vert \vert \vert $\frac{1}{2}$ $\textrm{inner product}\braket{\mathbf{a},\mathbf{a}}=\mathbf{a}^T\mathbf{a}=\|\mathbf{a}\|^2=\sum_{i=1}^na_i^2;\langle\mathbf{a},\mathbf{b}\rangle=\mathbf{a}^T\mathbf{b}$
- length or norm of **a** is ∥**a**∥

Matrices

• Matrices are represented in bold $\mathbf{A}=(a_{ij})^T$

• identity matrix \mathbf{I}_n square matrix with diagonal elements 1 and off diagonal 0

- trace: if
$$
\mathbf A
$$
 is $n\times m$ tr $(\mathbf A)=\sum_i^{\max n,m}a_{ii}$

- $\bullet \,$ determinant: for ${\bf A}$ is $n \times n$ then the determinant is $\det(A)$
- inverse: if **A** is nonsingular **A** > 0, then its inverse is **A**−¹

Statistical Models

Ohm's Law: Y is voltage across a resistor of r ohms and X current through the resistor (in theory)

$$
Y=rX
$$

• Simple linear regression for observational data

$$
Y_i=\beta_0+\beta_1x_i+\epsilon_i \text{ for } i=1,\ldots,n
$$

• Rewrite in vectors:

⎢ ⎢ ⎥ ⎥ is the amperes of the = *β*⁰ + *β*¹ + = [] + ⎡ ⎢⎣ *y*1 ⋮ *yn* ⎤ ⎥⎦ ⎡ ⎢⎣ 1 ⋮ 1 ⎤ ⎥⎦ ⎡ ⎢⎣ *x*1 ⋮ *xn* ⎤ ⎥⎦ ⎡ ⎢⎣ *ϵ*1 ⋮ *ϵn* ⎤ ⎥⎦ ⎡ ⎢⎣ 1 *x*¹ ⋮ ⋮ 1 *xn* ⎤ ⎥⎦ *β*0 *β*1 ⎡ ⎢⎣ *ϵ*1 ⋮ *ϵn* ⎤ ⎥⎦

Y = **X** $\beta + \epsilon$

Nonlinear Models ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

Gravitational Law: $F = \alpha/d^{\beta}$ where d is distance between 2 objects and F **S**

Fre *d* is distance between 2 objects and
 $=\log(\alpha) - \beta \log(d)$

data $Y_i = \log(F_i)$ observed at $x_i = \log(d)$

scale $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ listance between 2 objects and F is the
 $(x) - \beta \log(d)$
 $= \log(F_i)$ observed at $x_i = \log(d_i)$
 $= \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ force of gravity between them

• log transformations

$$
\log(F)=\log(\alpha)-\beta\log(d)
$$

- $\bullet \ \text{ compare to noisy experimental data } Y_i = \log(F_i)$ $\text{observed at } x_i = \log(d_i)$
- write $\mathbf{X} = [\mathbf{1}_n \mathbf{x}]$
- $\boldsymbol{\beta} = (\log(\alpha), -\beta)^T$
- \bullet model with additive error on log scale $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$
- test if $\beta = 2$
- error assumptions?

Intrinsically Nonlinear Models │ │ │ │
aalh*:* Nar │ │
ala la

Regression function may be an intrinsically nonlinear function of t_i (time) and parameters *θ*

$$
Y_i = f(t_i, \boldsymbol{\theta}) + \epsilon_i
$$

Time (hours)

Quadratic Linear Regression

Taylor's Theorem:

$$
f(t_i, \boldsymbol{\theta}) = f(t_0, \boldsymbol{\theta}) + (t_i - t_0) f'(t_0, \boldsymbol{\theta}) + (t_i - t_0)^2 \frac{f^{''}(t_0, \boldsymbol{\theta})}{2} + R(t_i, \boldsymbol{\theta})
$$

$$
Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i \text{ for } i = 1, \dots, n
$$

Rewrite in vectors:

$$
\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \\ 1 & x_n & x_n^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}
$$

$$
\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$
ar in β 's - how do we know this model is a

Quadratic in *x*, but linear in *β*'s - how do we know this model is adequate?

Kernel Regression (NonParametric)

$$
y_i = \beta_0 + \sum_{j=1}^J \beta_j e^{-\lambda(x_i-k_j)^d} + \epsilon_i \text{ for } i=1,\ldots,n
$$

where k_j are kernel locations and λ is a smoothing parameter

$$
y_i = \beta_0 + \sum_{j=1} \beta_j e^{-\lambda (x_i - k_j)^2} + \epsilon_i \text{ for } i = 1, ..., n
$$

re Kernel locations and λ is a smoothing parameter

$$
\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & e^{-\lambda (x_1 - k_1)^d} & \cdots & e^{-\lambda (x_1 - k_J)^d} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & e^{-\lambda (x_n - k_1)^d} & \cdots & e^{-\lambda (x_n - k_J)^d} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_J \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}
$$

$$
\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

 β given λ and $k_1, ..., k_J$
 $k_1, ..., k_J$ and J

$$
\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 & e^{-\lambda (x_1 - k_1)^d} & \cdots & e^{-\lambda (x_n - k_J)^d} \\ \vdots & \vdots \\ \vdots
$$

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$

- Linear in β given λ and $k_1,\ldots k_J$
- Learn $\lambda, k_1, \ldots k_J$ and J

Hierarchical Models

- each line represent individual sample trajectories
- correlation between an individual's measurements
- similarities within groups
- differences among groups?
- allow individual regressions for each individual ? 1

and line represent individual

sample trajectories

correlation between an

individual's measurements

similarities within groups

differences among groups?

allow individual regressions for

each individual ?

add more
-

Linear Regression Models

Response Y_i and p predictors $x_{i1}, x_{i2}, \ldots x_{i}p$

$$
Y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\dots \beta_px_{ip}+\epsilon_i
$$

Design matrix

$$
\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{x}_1^T \\ \vdots & \vdots \\ 1 & \mathbf{x}_n^T \end{bmatrix} = [\mathbf{1}_n \quad \mathbf{X}_1 \quad \mathbf{X}_2 \cdots \mathbf{X}_p]
$$

trix version

$$
\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon
$$

at should go into **X** and do we need all columns of **X** for inference about

• matrix version

$$
\mathbf{Y}=\mathbf{X}\boldsymbol{\beta}+\epsilon
$$

what should go into $\mathbf X$ and do we need all columns of $\mathbf X$ for inference about $\mathbf Y$?

Linear Model

- $\mathbf{Y} = \mathbf{X}\,\boldsymbol{\beta}$
- \mathbf{Y} ($n\times1$) vector of random response (observe $B + \epsilon$
) vect
) desi
vectc
vectc
vectc
s intc
ultipl
ut the
nty Qu
e wro ponse (observe **y**); $\mathbf{Y}, \mathbf{y} \in \mathbb{R}^n$
ve)
(unknown)
bbservable)
ling, model selection - post-sele
od"? (model averaging or enser
tion)
sumptions about ϵ
be useful (George Box)
- \mathbf{X} ($n \times p$) design matrix (observe)
- **•** *β* (*p* × 1) vector of coefficients (unknown)
- ϵ ($n \times 1$) vector of "errors" (unobservable)

Goals:

- What goes into **X**? (model building, model selection post-selection inference?)
- What if multiple models are "good"? (model averaging or ensembles)
- What about the future? (Prediction)
- Uncertainty Quantification assumptions about *ϵ*

All models are wrong, but some may be useful (George Box)

Ordinary Least Squares

Goal: Find the best fitting "line" ϕ r "hyper-plane" that minimizes

$$
\sum_i (Y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 = \left\lVert (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \right\rVert = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2
$$

- Optimization problem seek $\beta \ni \mathbf{X}\beta$ is close to \mathbf{Y} in squared error
- May over-fit \Rightarrow add other criteria that provide a penalty **Penalized Least Squares**
- Robustness to extreme points \Rightarrow replace quadratic loss with other functions
- no notion of uncertainty of estimates
- no structure of problem (repeated measures on individual, randomization restrictions, etc)

Need Distribution Assumptions of \mathbf{Y} (or $\boldsymbol{\epsilon}$) for testing and uncertainty measures \Rightarrow Likelihood and Bayesian inference **Squares**

or "hyper-plane" that minimizes
 $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2$
 $\boldsymbol{\beta} \ni \mathbf{X}\boldsymbol{\beta}$ is close to \mathbf{Y} in squared error

teria that provide a penalty Penalized Least Square

Random Vectors

Let $Y_1,\ldots Y_n$ be random variables in ${\mathbb R}$ Then

$$
\mathbf{Y}\equiv\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}
$$

is a random vector in \mathbb{R}^n

Expectations of random vectors are defined element-wise:

2

\n2

\nLet
$$
Y_1, \ldots Y_n
$$
 be random variables in \mathbb{R} . Then

\n
$$
\mathbf{Y} \equiv \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}
$$
\nis a random vector in \mathbb{R}^n .

\nExpectations of random vectors are defined element-wi

\n
$$
\mathsf{E}[\mathbf{Y}] \equiv \mathsf{E} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \equiv \begin{bmatrix} \mathsf{E}[Y_1] \\ \vdots \\ \mathsf{E}[Y_n] \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} \equiv \boldsymbol{\mu} \in \mathbb{R}^n
$$
\nwhere mean or expected value $\mathsf{E}[Y_i] = \mu_i$.

 $\mathsf{E}[Y_i] = \mu_i$

Model Space

We will work with inner product spaces: a vector spaces, say \mathbb{R}^n \mathbf{v} inner product $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Definition: Subspace

A set $\boldsymbol{\mathcal{M}}$ is a subspace of \mathbb{R}^n if is a subset of \mathbb{R}^n and also a vector space.

 $\bm{\pi}$ That is, if $\mathbf{x}_1\in\bm{\mathcal{M}}$ and $\mathbf{x}_2\in\bm{\mathcal{M}}$, then $b_1\mathbf{x}_1+b_2\mathbf{x}_2\in\bm{\mathcal{M}}$ for all $b_1,b_2\in\mathbb{R}$

Definition: Column Space

The column space of \mathbf{X} is $C(\mathbf{X}) = \mathbf{X}\boldsymbol{\beta}$ for $\boldsymbol{\beta} \in \mathbb{R}^p$

th inner product spaces: a vector spaces, say \mathbb{R}^n equipped with an
 $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

ubspace

ubspace of \mathbb{R}^n if is a subset of \mathbb{R}^n and also a vector space.
 \math If \bf{X} is full column rank, then the columns of \bf{X} form a basis for $C(\bf{X})$ and $C(\bf{X})$ is a pdimensional subspace of \mathbb{R}^n

If we have just a single model matrix **X**, then the subspace **M** is the *model space*.

Philosophy [⎢] [⎥] [⎢] [⎢] [⎥][⎥] [⎢] [⎥] ¹⁶

- for many problems frequentist and Bayesian methods will give similar answers (more a matter of taste in interpretation)
	- For small problems, Bayesian methods allow us to incorporate prior information which provides better calibrated answers
	- for problems with complex designs and/or missing data Bayesian methods are often easier to implement (do not need to rely on asymptotics)
- For problems involving hypothesis testing or model selection frequentist and Bayesian methods can be strikingly different.
- Frequentist methods often faster (particularly with "big data") so great for exploratory analysis and for building a "data-sense"
- Bayesian methods sit on top of Frequentist Likelihood
- Goemetric perspective important in both!

Important to understand advantages and problems of each perspective!