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Introduction to STA721
Course: Theory and Application of linear models from both a frequentist (classical)
and Bayesian perspective

Prerequisites: linear algebra and a mathematical statistics course covering
likelihoods and distribution theory (normal, t, F, chi-square, gamma distributions)

Introduce R programming as needed in the lab

Introduce Bayesian methods, but assume that you are co-registered in 702 or have
taken it previously

more info on Course website https://sta721-F24.github.io/website/

schedule and slides, HW, etc

critical dates (Midterms and Finals)

office hours

Canvas for grades, email, announcements

Please let me know if there are broken links for slides, etc!
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Notation
scalors are  (italics or math italics)a

vectors are in bold lower case, , with the exception of random variablesa
all vectors are column vectors

a =

⎡⎢⎣a1

a2

⋮
an

⎤⎥⎦ is a  vector of all ones1n n × 1
inner product ; ⟨a, a⟩ = aT a = ∥a∥2 = ∑n

i=1 a2
i ⟨a, b⟩ = aT b

length or norm of  is a ∥a∥
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⎢ ⎥Matrices
Matrices are represented in bold A = (aij)

A =

⎡⎢⎣a11 a12 ⋯ a1m

a21 a22 ⋯ a2m

⋮ ⋮ ⋮ ⋮
an1 an2 ⋯ anm

⎤⎥⎦identity matrix  square matrix with diagonal elements 1 and off diagonal 0In

trace: if  is  A n × m tr(A) = ∑max n,m
i aii

determinant: for  is  then the determinant is A n × n det(A)
inverse: if  is nonsingular , then its inverse is A A > 0 A−1
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⎢ ⎥⎢ ⎥Statistical Models
Ohm’s Law:  is voltage across a resistor of  ohms and  is the amperes of the
current through the resistor (in theory)

Y r X

Y = rX

Simple linear regression for observational data

Yi = β0 + β1xi + ϵi for i = 1, … , n

Rewrite in vectors:

= β0 + β1 + = [ ] +

Y = Xβ + ϵ

⎡⎢⎣y1

⋮
yn

⎤⎥⎦ ⎡⎢⎣1

⋮
1

⎤⎥⎦ ⎡⎢⎣x1

⋮
xn

⎤⎥⎦ ⎡⎢⎣ϵ1

⋮
ϵn

⎤⎥⎦ ⎡⎢⎣1 x1

⋮ ⋮
1 xn

⎤⎥⎦ β0

β1

⎡⎢⎣ϵ1

⋮
ϵn

⎤⎥⎦ 5



⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Nonlinear Models
Gravitational Law:  where  is distance between 2 objects and  is the
force of gravity between them

F = α/dβ d F

log transformations

log(F) = log(α) − β log(d)

compare to noisy experimental data  observed at Yi = log(Fi) xi = log(di)
write X = [1n x]

β = (log(α), −β)T

model with additive error on log scale Y = Xβ + e
test if β = 2
error assumptions?
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Intrinsically Nonlinear Models
Regression function may be an intrinsically nonlinear function of  (time) and
parameters 

ti

θ

Yi = f(ti, θ) + ϵi
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥



Quadratic Linear Regression
Taylor’s Theorem:

f(ti, θ) = f(t0, θ) + (ti − t0)f ′(t0, θ) + (ti − t0)2 f
′′(t0, θ)

2
+ R(ti, θ)

Yi = β0 + β1xi + β2x2
i + ϵi for i = 1, … , n

Rewrite in vectors:

= +

Y = Xβ + ϵ

⎡⎢⎣y1

⋮
yn

⎤⎥⎦ ⎡⎢⎣1 x1 x2
1

⋮ ⋮
1 xn x2

n

⎤⎥⎦ ⎡⎢⎣β0

β1

β2

⎤⎥⎦ ⎡⎢⎣ϵ1

⋮
ϵn

⎤⎥⎦Quadratic in , but linear in ’s - how do we know this model is adequate?x β
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Kernel Regression (NonParametric)

where  are kernel locations and  is a smoothing parameter

yi = β0 +
J∑

j=1

βje
−λ(xi−kj)d

+ ϵi for i = 1, … , n

kj λ

= +

Y = Xβ + ϵ

⎡⎢⎣y1

⋮
yn

⎤⎥⎦ ⎡⎢⎣1 e−λ(x1−k1)d

… e−λ(x1−kJ)d

⋮ ⋮ ⋮

1 e−λ(xn−k1)d

… e−λ(xn−kJ)d

⎤⎥⎦ ⎡⎢⎣β0

β1

⋮
βJ

⎤⎥⎦ ⎡⎢⎣ϵ1

⋮
ϵn

⎤⎥⎦Linear in  given  and β λ k1, … kJ

Learn ,  and λ k1, … kJ J
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Hierarchical Models
each line represent individual
sample trajectories

correlation between an
individual’s measurements

similarities within groups

differences among groups?

allow individual regressions for
each individual ?

add more structure?
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
Linear Regression Models
Response  and  predictors Yi p xi1, xi2, … xip

Yi = β0 + β1xi1 + β2xi2 + … βpxip + ϵi

Design matrix

X = = = [ ]

⎡⎢⎣1 x11 … x1p

1 x21 … x2p

⋮ ⋮ ⋮ ⋮
1 xn1 … xnp

⎤⎥⎦ ⎡⎢⎣1 xT
1

⋮ ⋮
1 xT

n

⎤⎥⎦ 1n X1 X2 ⋯ Xp

matrix version

what should go into  and do we need all columns of  for inference about ?

Y = Xβ + ϵ

X X Y
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⎢ ⎥ ⎢ ⎥Linear Model
Y = X β + ϵ

 ( ) vector of random response (observe ); Y n × 1 y Y, y ∈ Rn

 ( ) design matrix (observe)X n × p

 ( ) vector of coefficients (unknown)β p × 1
 ( ) vector of “errors” (unobservable)ϵ n × 1

Goals:

What goes into ? (model building, model selection - post-selection inference?)X
What if multiple models are “good”? (model averaging or ensembles)

What about the future? (Prediction)

Uncertainty Quantification - assumptions about ϵ

All models are wrong, but some may be useful (George Box)
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⎢ ⎥ ⎢ ⎥
Ordinary Least Squares
Goal: Find the best fitting “line” or “hyper-plane” that minimizes

∑
i

(Yi − xT
i β)2 = (Y − Xβ)T (Y − Xβ) = ∥Y − Xβ∥2

Optimization problem - seek  is close to  in squared errorβ ∋ Xβ Y
May over-fit  add other criteria that provide a penalty Penalized Least Squares⇒
Robustness to extreme points  replace quadratic loss with other functions⇒
no notion of uncertainty of estimates

no structure of problem (repeated measures on individual, randomization
restrictions, etc)

Need Distribution Assumptions of  (or ) for testing and uncertainty measures 
Likelihood and Bayesian inference

Y ϵ ⇒
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⎢ ⎥ ⎢ ⎥
Random Vectors

Let  be random variables in  Then

is a random vector in 

Y1, … Yn R

Y ≡
⎡⎢⎣Y1

⋮
Yn

⎤⎥⎦Rn

Expectations of random vectors are defined element-wise:

where mean or expected value 

E[Y] ≡ E ≡ = ≡ µ ∈ Rn
⎡⎢⎣Y1

⋮
Yn

⎤⎥⎦ ⎡⎢⎣E[Y1]

⋮
E[Yn]

⎤⎥⎦ ⎡⎢⎣µ1

⋮
µn

⎤⎥⎦E[Yi] = µi
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Model Space
We will work with inner product spaces: a vector spaces, say  equipped with an
inner product 

Rn

⟨x, y⟩ ≡ xT y, x, y ∈ Rn

Definition: Subspace

A set  is a subspace of  if is a subset of  and also a vector space.

That is, if  and , then  for all 

M Rn Rn

x1 ∈ M x2 ∈ M b1x1 + b2x2 ∈ M b1, b2 ∈ R

Definition: Column Space

The column space of  is  for X C(X) = Xβ β ∈ Rp

If  is full column rank, then the columns of  form a basis for  and  is a p-
dimensional subspace of 

X X C(X) C(X)
Rn

If we have just a single model matrix , then the subspace  is the model space.X M
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Philosophy
for many problems frequentist and Bayesian methods will give similar answers
(more a matter of taste in interpretation)

For small problems, Bayesian methods allow us to incorporate prior information
which provides better calibrated answers

for problems with complex designs and/or missing data Bayesian methods are
often easier to implement (do not need to rely on asymptotics)

For problems involving hypothesis testing or model selection frequentist and
Bayesian methods can be strikingly different.

Frequentist methods often faster (particularly with “big data”) so great for
exploratory analysis and for building a “data-sense”

Bayesian methods sit on top of Frequentist Likelihood

Goemetric perspective important in both!

Important to understand advantages and problems of each perspective!
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