Introduction to STA721

Merlise Clyde (clyde@duke.edu) Duke University

Introduction to STA721

- Course: Theory and Application of linear models from both a frequentist (classical) and Bayesian perspective
- Prerequisites: linear algebra and a mathematical statistics course covering likelihoods and distribution theory (normal, t, F, chi-square, gamma distributions)
- Introduce R programming as needed in the lab
- Introduce Bayesian methods, but assume that you are co-registered in 702 or have taken it previously
- more info on Course website https://sta721-F24.github.io/website/
 - schedule and slides, HW, etc
 - critical dates (Midterms and Finals)
 - office hours
- Canvas for grades, email, announcements

Please let me know if there are broken links for slides, etc!

Notation

- scalors are *a* (italics or math talics)
- vectors are in bold lower case, **a**, with the exception of random variables
- all vectors are column vectors

$$\mathbf{a} = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix}$$

- $\mathbf{1}_n$ is a n imes 1 vector of all ones
- inner product $\langle \mathbf{a}, \mathbf{a} \rangle = \mathbf{a}^T \mathbf{a} = \|\mathbf{a}\|^2 = \sum_{i=1}^n a_i^2; \langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}$
- length or norm of a is $\|a\|$

Matrices

• Matrices are represented in bold $\mathbf{A}=(a_{ij})$

	a_{11}	a_{12}	• • •	a_{1m}
•	a_{21}	a_{22}	• • •	a_{2m}
$\mathbf{A} =$		• •	• •	• •
	$\lfloor a_{n1}$	a_{n2}	• • •	a_{nm}

- identity matrix \mathbf{I}_n square matrix with diagonal elements 1 and off diagonal 0

• trace: if
$${f A}$$
 is $n imes m\,{ t tr}({f A})=\sum_i^{\max n,m}a_{ii}$

- determinant: for ${f A}$ is n imes n then the determinant is $\det(A)$
- inverse: if ${f A}$ is nonsingular ${f A}>0$, then its inverse is ${f A}^{-1}$

Statistical Models

Ohm's Law: Y is voltage across a resistor of r ohms and X is the amperes of the current through the resistor (in theory)

$$Y = rX$$

• Simple linear regression for observational data

$$Y_i = eta_0 + eta_1 x_i + \epsilon_i ext{ for } i = 1, \dots, n$$

• Rewrite in vectors:

$$egin{bmatrix} y_1\ dots\ y_n\end{bmatrix}=egin{bmatrix} 1\ dots\ 1\end{bmatrix}eta_0+egin{bmatrix} x_1\ dots\ x_n\end{bmatrix}eta_1+egin{bmatrix} \epsilon_1\ dots\ lpha\ lpha\end{bmatrix}=egin{bmatrix} 1&x_1\ dots\ lpha\ dots\ eta_1\end{bmatrix}+egin{bmatrix} \epsilon_1\ dots\ lpha\ dots\ eta_n\end{bmatrix}+egin{bmatrix} \epsilon_1\ dots\ eta_n\end{bmatrix}+egin{bmatrix} \epsilon_1\ dots\ eta_n\end{bmatrix}$$

$$\mathbf{Y}= \mathbf{X}oldsymbol{eta}+oldsymbol{\epsilon}$$

Nonlinear Models

Gravitational Law: $F = \alpha/d^{\beta}$ where d is distance between 2 objects and F is the force of gravity between them

• log transformations

$$\log(F) = \log(lpha) - eta \log(d)$$

- compare to noisy experimental data $Y_i = \log(F_i)$ observed at $x_i = \log(d_i)$
- write $\mathbf{X} = [\mathbf{1}_n \, \mathbf{x}]$
- $\boldsymbol{\beta} = (\log(\alpha), -\beta)^T$
- model with additive error on log scale $\mathbf{Y} = \mathbf{X} oldsymbol{eta} + \mathbf{e}$
- test if $\beta=2$
- error assumptions?

Intrinsically Nonlinear Models

Regression function may be an intrinsically nonlinear function of t_i (time) and parameters $\pmb{\theta}$

$$Y_i = f(t_i, \boldsymbol{\theta}) + \epsilon_i$$

Time (hours)

Quadratic Linear Regression

Taylor's Theorem:

$$egin{aligned} f(t_i,oldsymbol{ heta}) &= f(t_0,oldsymbol{ heta}) + (t_i-t_0)f'(t_0,oldsymbol{ heta}) + (t_i-t_0)^2rac{f''(t_0,oldsymbol{ heta})}{2} + R(t_i,oldsymbol{ heta}) \ &Y_i &= eta_0 + eta_1 x_i + eta_2 x_i^2 + \epsilon_i ext{ for } i = 1,\ldots,n \end{aligned}$$

Rewrite in vectors:

$$egin{bmatrix} y_1\ dots\ y_n\ \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2\ dots & dots\ y_n\ \end{bmatrix} egin{matrix} eta_0\ dots\ dots\$$

Quadratic in x, but linear in β 's - how do we know this model is adequate?

Kernel Regression (NonParametric)

$$y_i = eta_0 + \sum_{j=1}^J eta_j e^{-\lambda (x_i - k_j)^d} + \epsilon_i ext{ for } i = 1, \dots, n$$

9

where k_i are kernel locations and λ is a smoothing parameter

 $oldsymbol{\Lambda}
ho$

- Linear in eta given λ and $k_1, \ldots k_J$
- Learn λ , $k_1, \ldots k_J$ and J

Hierarchical Models

- each line represent individual sample trajectories
- correlation between an individual's measurements
- similarities within groups
- differences among groups?
- allow individual regressions for each individual?
- add more structure?

Linear Regression Models

Response Y_i and p predictors $x_{i1}, x_{i2}, \ldots x_i p$

$$Y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots eta_p x_{ip} + \epsilon_i$$

• Design matrix

$$\mathbf{X} = egin{bmatrix} 1 & x_{11} & \ldots & x_{1p} \ 1 & x_{21} & \ldots & x_{2p} \ dots & dots & dots & dots & dots \ 1 & dots & dots & dots & dots \ 1 & dots & dots & dots \ 1 & \mathbf{x}_n^T \end{bmatrix} = egin{bmatrix} 1 & \mathbf{x}_1^T \ dots & dots \ 1 & \mathbf{x}_n^T \end{bmatrix} = egin{bmatrix} \mathbf{1} & \mathbf{x}_1 & \mathbf{X}_2 \cdots \mathbf{X}_p \end{bmatrix}$$

• matrix version

$$\mathbf{Y} = \mathbf{X} oldsymbol{eta} + \epsilon$$

what should go into \mathbf{X} and do we need all columns of \mathbf{X} for inference about \mathbf{Y} ?

Linear Model

- $\mathbf{Y} = \mathbf{X} \, \boldsymbol{eta} + \boldsymbol{\epsilon}$
- \mathbf{Y} (n imes 1) vector of random response (observe \mathbf{y}); $\mathbf{Y},\mathbf{y}\in\mathbb{R}^n$
- \mathbf{X} (n imes p) design matrix (observe)
- $oldsymbol{eta}$ (p imes 1) vector of coefficients (unknown)
- $oldsymbol{\epsilon}$ (n imes 1) vector of "errors" (unobservable)

Goals:

- What goes into \mathbf{X} ? (model building, model selection post-selection inference?)
- What if multiple models are "good"? (model averaging or ensembles)
- What about the future? (Prediction)
- Uncertainty Quantification assumptions about ϵ

All models are wrong, but some may be useful (George Box)

Ordinary Least Squares

Goal: Find the best fitting "line" or "hyper-plane" that minimizes

$$\sum_i (Y_i - \mathbf{x}_i^T oldsymbol{eta})^2 = |(\mathbf{Y} ig| - \mathbf{X} oldsymbol{eta})^T (\mathbf{Y} - \mathbf{X} oldsymbol{eta}) = \|\mathbf{Y} - \mathbf{X} oldsymbol{eta}\|^2$$

- Optimization problem seek $oldsymbol{eta}
 ightarrow {f X} oldsymbol{eta}$ is close to ${f Y}$ in squared error
- May over-fit \Rightarrow add other criteria that provide a penalty **Penalized Least Squares**
- Robustness to extreme points \Rightarrow replace quadratic loss with other functions
- no notion of uncertainty of estimates
- no structure of problem (repeated measures on individual, randomization restrictions, etc)

Need Distribution Assumptions of \mathbf{Y} (or ϵ) for testing and uncertainty measures \Rightarrow Likelihood and Bayesian inference

Random Vectors

• Let $Y_1, \ldots Y_n$ be random variables in $\mathbb R$ Then

$$\mathbf{Y}\equivegin{bmatrix}Y_1\dots\Y_n\end{bmatrix}$$

is a random vector in \mathbb{R}^n

• Expectations of random vectors are defined element-wise:

$$\mathsf{E}[\mathbf{Y}] \equiv \mathsf{E} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \equiv \begin{bmatrix} \mathsf{E}[Y_1] \\ \vdots \\ \mathsf{E}[Y_n] \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} \equiv \boldsymbol{\mu} \in \mathbb{R}^n$$

where mean or expected value $\mathsf{E}[Y_i] = \mu_i$

Model Space

We will work with inner product spaces: a vector spaces, say \mathbb{R}^n equipped with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \mathbf{y}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

▼ **Definition:** Subspace

A set \mathcal{M} is a subspace of \mathbb{R}^n if is a subset of \mathbb{R}^n and also a vector space.

That is, if $\mathbf{x}_1 \in \mathcal{M}$ and $\mathbf{x}_2 \in \mathcal{M}$, then $b_1\mathbf{x}_1 + b_2\mathbf{x}_2 \in \mathcal{M}$ for all $b_1, b_2 \in \mathbb{R}$

▼ Definition: Column Space

The column space of ${f X}$ is $C({f X})={f X}oldsymbol{eta}$ for $oldsymbol{eta}\in \mathbb{R}^p$

If X is full column rank, then the columns of X form a basis for C(X) and C(X) is a pdimensional subspace of \mathbb{R}^n

If we have just a single model matrix \mathbf{X} , then the subspace \mathcal{M} is the model space.

Philosophy

- for many problems frequentist and Bayesian methods will give similar answers (more a matter of taste in interpretation)
 - For small problems, Bayesian methods allow us to incorporate prior information which provides better calibrated answers
 - for problems with complex designs and/or missing data Bayesian methods are often easier to implement (do not need to rely on asymptotics)
- For problems involving hypothesis testing or model selection frequentist and Bayesian methods can be strikingly different.
- Frequentist methods often faster (particularly with "big data") so great for exploratory analysis and for building a "data-sense"
- Bayesian methods sit on top of Frequentist Likelihood
- Goemetric perspective important in both!

Important to understand advantages and problems of each perspective!