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Readings: Christensen Chapter 1-2, Appendix A, and Appendix B



Normal Model

Take anrandom vector Y € R"™ which is observable and decompose

Y=p+e

e 1 € R" (unknown, fixed)

e € € R" unobservable error vector (random)

Usual assumptions?

e Fle;] =0Vi< Ele] =0 = E[Y] = u(mean vector)
e ¢; independent with Var(e;) = 0% and Cov(e;, €;) =0

e Matrix version

Covle] = [(E [(e; — Elei])(e; — Ele;])]];; = 0’I, = Cov[Y] = oI, (errors

are uncorrelated)

e €; < N(0,02) implies that Y; = N(u;, o2)



Likelihood Function

The likelihood function for w, o is proportional to the sampling distribution of the
data
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Last line is the density of Y ~ N, (u, 02In)



MLEs

Find values of fx and 6 that maximize the likelihood £(, ) for p € R™ and
2 +
o€ R
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or equivalently the log likelihood

e Clearly, it = Y but &2 = 0is outside the parameter space

e If u = X3, canshowthat 8 = (XTX)'XTY is the MLE/OLS estimator of 8 and
= X 3 if X is full column rank.

e show via projections



Projections

take any pointy € R"™ and “project” itonto C(X) = M
y

any point already in M stays the same

so if Px is a projection onto the column space of X thenform € C(X)
PXm = 1m

P < is alinear transformation from R — R"
maps vectors in R™ into C'(X)
ifz € R"thenPxz = Xa € C(X) forsomea € R?

Example

For X € R"*P, rankp, Px = X(XTX)_lX is a projection onto the p dimensional subspace M = C(X)



ldempotent Matrix

What if we project a projection?

* PXz — Xa € C(X)

i Pan = Xa

e since P32z = Pxzforallz € R" wehave P3 = Px

V¥ Definition: Projection

For a matrix P in R™ " is a projection matrix if P2 = P. That is all projections P are
idempotent matrix.

Exercise

For X € R™ P, rank p, if Px = X(XTX) X use the definition to show that it is a projection onto the p
dimensional subspace M = C(X)




Null Space

v Definition: Orthogonal Complement

The set of all vectors that are orthogonal to a given subspace M is called the
orthogonal complement of the subspace denoted as M. Under the usual inner
product, M+ = {n € R” > m’n = 0 form € M}

v Definition: Null Space

For a matrix A, the null space of A is definedas N(A) = {n > An = 0}

Exercise

Show that C'(X) (the orthogonal complement of C'(X)) is the null space of XT, N (XT).



Orthogonal Projection

v Definition: Orthogonal Projections

For a vector space V with an inner product (x,y) forx,y € V,xandy are

orthogonal if (x, y) = 0. A projection P is an orthogonal projection onto a subspace
MofVifforanym € V,Pm = mandforanyn € M~+,Pn = 0.

The null space of P is the orthogonal complement of M

For RY with the inner product, (x,y) = x Ty, P is an orthogonal projection onto M
if P is a projection (P2 = P) and it is symmetric (P = PT)

Exercise

Show that Px is an orthogonal projection on C(X)



Decompsition

e Foranyy € R", we can write it uniquely as a vector
y=m+n meceM neM'

e writty =Py +(y—Py)=Py+(I—-P)y

e claim that if P is an orthogonal projection, (I — P) is an orthogonal projection onto
M-

e ifnc M+ then(I-P)n=n—-Pn=n
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Back to MLEs

¢ Y ~ N(p,0%L,) with u = X8 and X full column rank
Claim: Maximum Likelihood Estimator (MLE) of pisPxY
Log Likelihood:

1Y — pf?
2 o2

log £(p, 0?) = —glong) -

DecomposeY = PxY + (I - Px)Y
UsePxu =
Simplify [|[Y — pl|?
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Expand

IY — pl* = |T-Px)Y + P, Y —

I-Px)Y+P,Y —Pxpul?

Y
Y|* + [Px(Y — p)[* +0
Y|+ |PxY — p|?

Crossproduct term is zero:

Py (I-Px)=Px(I-Px)
= Px — PxPx
= Px — Px
=0
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Log Likelihood

Substitute decomposition into log likelihood

n 1Y —
log L(p,0%) = — Elog( 2) — 5 —
n 1 (I-PY)Y|* [PxY — pl’
P (a2
log(o?) — 5 (L2 I
I-Px)Y|? P+Y — 42
 Pog(o?)~ LIEZPOY|? 1 [PxY — p
2 2 o2 2 o2 )
= constant with respect to u <0

 Maximize with respect to p for each o2

e RHSis largest when u = PxY for any choice of o
n=PxY

is the MLE of p (fitted values Y = PxY)
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Rewrite as likeloood function for B, o:
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L(B,0°) = ——log(c?) —

2 2 2 2
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e Similar argument to show that RHS is maximized by minimizing
IPxY — XB|
e Therefore B is a MLE of B if and only if satisfies
PxY = Xj

e FXTX isfullrank.the MIFof Bis (XTX)I1XTY = R



MLE of o2



e Plug-in MLE of fi for p

, 1 [I-Px)Y|*

log L(f1,0°) = —Eloga 5 —

e Differentiate with respect to o’

0 log L(fx, o n 1 1 1\’
) - Py ()

0 o 2 o2

e Set derivative to zero and solve for MLE
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MLE Estimate of o2

Maximum Likelihood Estimate of o
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where e = (I — Px)Y are the residuals from the regression of Y on X
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