Maximum Likelihood Estimation

STA 721: Lecture 2

Merlise Clyde (clyde@duke.edu) Duke University

Outline

- Likelihood Function
- Projections
- Maximum Likelihood Estimates

Readings: Christensen Chapter 1-2, Appendix A, and Appendix B

Normal Model

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

 $\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$

- $\boldsymbol{\mu} \in \mathbb{R}^n$ (unknown, fixed)
- $\boldsymbol{\epsilon} \in \mathbb{R}^n$ unobservable error vector (random)

Usual assumptions?

- $E[\epsilon_i] = 0 \; \forall i \Leftrightarrow E[\epsilon] = \mathbf{0} \Rightarrow E[\mathbf{Y}] = \boldsymbol{\mu}$ (mean vector)
- ϵ_i independent with $\textsf{Var}(\epsilon_i) = \sigma^2$ and $\textsf{Cov}(\epsilon_i, \epsilon_i) = 0$
- Matrix version ${\sf Cov}[\bm{\epsilon}] \equiv [({\sf E}\left[(\epsilon_i - {\sf E}[\epsilon_i]) (\epsilon_j - {\sf E}[\epsilon_j])]\right]_{ij} = \sigma^2 {\bf I}_n \quad \Rightarrow {\sf Cov}[\mathbf{Y}] = \sigma^2 {\bf I}_n$ (errors are uncorrelated)

•
$$
\boldsymbol{\epsilon}_i \stackrel{\text{iid}}{\sim} \textsf{N}(0,\sigma^2)
$$
 implies that $Y_i \stackrel{\text{ind}}{\sim} \textsf{N}(\mu_i,\sigma^2)$

Likelihood Function

The likelihood function for $\boldsymbol{\mu}, \sigma^2$ is proportional to the sampling distribution of the data

$$
\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto \prod_{i=1}^n \frac{1}{\sqrt{(2\pi\sigma^2)}} \exp{-\frac{1}{2} \left\{ \frac{(Y_i - \mu_i)^2}{\sigma^2} \right\}} \propto (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\sum_i (Y_i - \mu_i)^2)}{\sigma^2} \right\} \propto (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right\} \propto (2\pi)^{-n/2} |\mathbf{I}_n \sigma^2|^{-1/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right\}
$$

Last line is the density of $\mathbf{Y} \sim \mathsf{N}_n\left(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n\right)$

MLEs

 \bar{F} ind values of $\hat{\bm{\mu}}$ and $\hat{\sigma}^2$ that maximize the likelihood $\mathcal{L}(\bm{\mu}, \sigma^2)$ for $\bm{\mu} \in \mathbb{R}^n$ and $\sigma^2 \in \mathbb{R}^+$

$$
\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (\sigma^2)^{-n/2} \exp\left\{ -\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right\} \\[2mm] \log(\mathcal{L}(\boldsymbol{\mu}, \sigma^2)) \propto \ - \ \frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}
$$

or equivalently the log likelihood

- Clearly, $\hat{\boldsymbol{\mu}} = \mathbf{Y}$ but $\hat{\sigma}^2 = 0$ is outside the parameter space
- If $\bm{\mu} = \mathbf{X}\bm{\beta}$, can show that $\hat{\bm{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$ is the MLE/OLS estimator of $\bm{\beta}$ and $\hat{\boldsymbol{\mu}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ if \mathbf{X} is full column rank.
- show via projections

Projections

 \mathbf{r} take any point $\mathbf{y} \in \mathbb{R}^n$ and "project" it onto $C(\mathbf{X}) = \boldsymbol{\mathcal{M}}$

- any point already in $\mathcal M$ stays the same
- so if $\mathbf{P}_\mathbf{X}$ is a projection onto the column space of \mathbf{X} then for $\mathbf{m}\in C(\mathbf{X})$ $P_Xm = m$
- $\mathbf{P}_{\mathbf{X}}$ is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$
- maps vectors in \mathbb{R}^n into $C(\mathbf{X})$
- \bullet if $\mathbf{z} \in \mathbb{R}^n$ then $\mathbf{P}_{\mathbf{X}}\mathbf{z} = \mathbf{X}\mathbf{a} \in C(\mathbf{X})$ for some $\mathbf{a} \in \mathbb{R}^p$

Example

 F or $\mathbf{X}\in\mathbb{R}^{n\times p}$, rank p , $\mathbf{P_X}=\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}$ is a projection onto the p dimensional subspace $\mathcal{\bm{\mathcal{M}}}=C(\mathbf{X})$

Idempotent Matrix

What if we project a projection?

- $P_{X}Z = Xa \in C(X)$
- \bullet $P_XXa = Xa$
- \mathbf{S} ince $\mathbf{P}^2_{\mathbf{X}}\mathbf{z} = \mathbf{P}_{\mathbf{X}}\mathbf{z}$ for all $\mathbf{z} \in \mathbb{R}^n$ we have $\mathbf{P}^2_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$

Definition: Projection

For a matrix \mathbf{P} in $\mathbb{R}^{n\times n}$ is a projection matrix if $\mathbf{P}^2=\mathbf{P}.$ That is all projections \mathbf{P} are idempotent matrix.

Exercise $\binom{1}{i}$

> ${\bf F}$ or ${\bf X}\in\mathbb{R}^{n\times p}$, rank p , if ${\bf P}_{\bf X}={\bf X}({\bf X}^T{\bf X})^{-1}{\bf X}$ use the definition to show that it is a projection onto the p dimensional subspace $\boldsymbol{\mathcal{M}}=C(\mathbf{X})$

Null Space

Definition: Orthogonal Complement

The set of all vectors that are orthogonal to a given subspace $\boldsymbol{\mathcal{M}}$ is called the $\bm{\mathsf{orth}}$ orthogonal complement of the subspace denoted as $\bm{\mathcal{M}}^\perp$. Under the usual inner \mathbf{p} roduct, $\boldsymbol{\mathcal{M}}^\perp \equiv \{ \mathbf{n} \in \mathbb{R}^n \ni \mathbf{m}^T\mathbf{n} = 0 \text{ for } \mathbf{m} \in \boldsymbol{\mathcal{M}} \}$

Definition: Null Space

For a matrix **A**, the *null space* of **A** is defined as $N(A) = \{n \ni An = 0\}$

Exercise \bigcirc $C(\mathbf{X})^\perp$ (the *orthogonal complement* of $C(\mathbf{X})$) is the *null space* of \mathbf{X}^T , $N(\mathbf{X}^T)$.

Orthogonal Projection

Definition: Orthogonal Projections

For a vector space $\mathcal V$ with an inner product $\langle \mathbf x, \mathbf y \rangle$ for $\mathbf x, \mathbf y \in \mathcal V$, $\mathbf x$ and $\mathbf y$ are \mathbf{r} orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0.$ A projection \mathbf{P} is an $\it{orthogonal}$ projection onto a subspace $\boldsymbol{\mathcal{M}}$ of $\boldsymbol{\mathcal{V}}$ if for any $\textbf{m} \in \boldsymbol{\mathcal{V}}, \textbf{P}\textbf{m} = \textbf{m}$ and for any $\textbf{n} \in \boldsymbol{\mathcal{M}}^\perp$, $\textbf{P}\textbf{n} = \textbf{0}$.

The null space of ${\bf P}$ is the orthogonal complement of ${\boldsymbol{\mathcal{M}}}$

For \mathbb{R}^N with the inner product, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$, \mathbf{P} is an orthogonal projection onto $\boldsymbol{\mathcal{M}}$ if ${\bf P}$ is a projection (${\bf P}^2={\bf P}$) and it is symmetric (${\bf P}={\bf P}^T$)

Show that $\mathbf{P}_\mathbf{X}$ is an orthogonal projection on $C(\mathbf{X})$. **Exercise**

Decompsition

• For any $\mathbf{y} \in \mathbb{R}^n$, we can write it uniquely as a vector

 $\mathbf{y} = \mathbf{m} + \mathbf{n}, \quad \mathbf{m} \in \mathcal{M} \quad \mathbf{n} \in \mathcal{M}^{\perp}$

- write **y** = **Py** + (**y** − **Py**) = **Py** + (**I** − **P**)**y**
- claim that if **P** is an orthogonal projection, (**I** − **P**) is an orthogonal projection onto \mathcal{M}^{\perp}
- \bullet if $\mathbf{n} \in \mathcal{M}^{\perp}$, then $(\mathbf{I} \mathbf{P})\mathbf{n} = \mathbf{n} \mathbf{P}\mathbf{n} = \mathbf{n}$

Back to MLEs

- \bullet $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ and \mathbf{X} full column rank
- Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- Log Likelihood:

$$
\log\mathcal{L}(\boldsymbol{\mu},\sigma^2)=-\frac{n}{2}\text{log}(\sigma^2)-\frac{1}{2}\frac{\|\mathbf{Y}-\boldsymbol{\mu}\|^2}{\sigma^2}
$$

- Decompose $\mathbf{Y} = \mathbf{P_XY} + (\mathbf{I} \mathbf{P_X})\mathbf{Y}$
- Use $P_X \mu = \mu$
- Simplify $\|\mathbf{Y} \boldsymbol{\mu}\|^2$

Expand

$$
\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{x}\mathbf{Y} - \boldsymbol{\mu}\|^2
$$

\n
$$
= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{x}\mathbf{Y} - \mathbf{P}_{\mathbf{X}}\boldsymbol{\mu}\|^2
$$

\n
$$
= \|(\mathbf{I} - \mathbf{P}_{\mathbf{x}})\mathbf{Y} + \mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2
$$

\n
$$
= \|(\mathbf{I} - \mathbf{P}_{\mathbf{x}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 + 2(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{P}_{\mathbf{X}}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}
$$

\n
$$
= \|(\mathbf{I} - \mathbf{P}_{\mathbf{x}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 + 0
$$

\n
$$
= \|(\mathbf{I} - \mathbf{P}_{\mathbf{x}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2
$$

Crossproduct term is zero:

$$
\begin{aligned} \mathbf{P}_{\mathbf{X}}^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) &= \mathbf{P}_{\mathbf{X}}(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \\ &= \mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{X}} \mathbf{P}_{\mathbf{X}} \\ &= \mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{X}} \\ &= \mathbf{0} \end{aligned}
$$

Log Likelihood

Substitute decomposition into log likelihood

Log Likelihood
\nSubstitute decomposition into log likelihood
\n
$$
\log \mathcal{L}(\mu, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}
$$
\n
$$
= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)
$$
\n
$$
= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{1}{2} \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}
$$
\n
$$
= \text{ constant with respect to } \boldsymbol{\mu} \quad \leq 0
$$
\n• Maximize with respect to $\boldsymbol{\mu}$ for each σ^2
\n• RHS is largest when $\boldsymbol{\mu} = \mathbf{P}_{\mathbf{X}}\mathbf{Y}$ for any choice of σ^2
\n
$$
\therefore \quad \hat{\boldsymbol{\mu}} = \mathbf{P}_{\mathbf{X}}\mathbf{Y}
$$
\nis the MLE of $\boldsymbol{\mu}$ (fitted values $\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}}\mathbf{Y}$)

- Maximize with respect to $\boldsymbol{\mu}$ for each σ^2
- RHS is largest when $\boldsymbol{\mu} = \mathbf{P}_\mathbf{X}\mathbf{Y}$ for any choice of σ^2

$$
\therefore \quad \hat{\boldsymbol{\mu}} = \mathbf{P}_\mathbf{X} \mathbf{Y}
$$

is the MLE of
$$
\mu
$$
 (fitted values $\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}} \mathbf{Y}$)

MLE of *β*

$$
\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \text{log}(\sigma^2) - \frac{1}{2}\bigg(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_XY} - \boldsymbol{\mu}\|^2}{\sigma^2}\bigg)
$$

Rewrite as likeloood function for β, σ^2 :

$$
\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \text{log}(\sigma^2) - \frac{1}{2}\bigg(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_XY} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \bigg)
$$

Similar argument to show that RHS is maximized by minimizing

$$
\| \mathbf P_{\mathbf X} \mathbf Y - \mathbf X \boldsymbol \beta \|^2
$$

• Therefore $\hat{\boldsymbol{\beta}}$ is a MLE of $\boldsymbol{\beta}$ if and only if satisfies

$$
\mathbf{P_XY}=\mathbf{X}\hat{\boldsymbol{\beta}}
$$

 \cdot If $\mathbf{X}^T\mathbf{X}$ is full rank, the MLE of $\boldsymbol{\beta}$ is $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \hat{\boldsymbol{\beta}}$

• Plug-in MLE of $\hat{\mu}$ for μ

$$
\log\mathcal{L}(\hat{\boldsymbol{\mu}},\sigma^2)=-\frac{n}{2}\text{log}\,\sigma^2-\frac{1}{2}\frac{\|(\mathbf{I}-\mathbf{P}_\mathbf{X})\mathbf{Y}\|^2}{\sigma^2}
$$

• Differentiate with respect to σ^2

$$
\frac{\partial\,\log\mathcal{L}(\hat{\boldsymbol{\mu}},\sigma^2)}{\partial\,\sigma^2}=-\frac{n}{2}\frac{1}{\sigma^2}+\frac{1}{2}\|(\mathbf{I}-\mathbf{P}_\mathbf{X})\mathbf{Y}\|^2{\left(\frac{1}{\sigma^2}\right)}^2
$$

Set derivative to zero and solve for MLE

$$
0 = -\frac{n}{2}\frac{1}{\hat{\sigma}^2} + \frac{1}{2}\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\hat{\sigma}^2}\right)^2
$$

$$
\frac{n}{2}\hat{\sigma}^2 = \frac{1}{2}\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2
$$

$$
\hat{\sigma}^2 = \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{n}
$$

MLE Estimate of σ^2

Maximum Likelihood Estimate of σ^2

$$
\hat{\sigma}^2 = \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{n}
$$

$$
= \frac{\mathbf{Y}^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}})^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}}{n}
$$

$$
= \frac{\mathbf{Y}^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}}{n}
$$

$$
= \frac{\mathbf{e}^T \mathbf{e}}{n}
$$

 $\bf w$ here $\bf e = (\bf I - \bf P_X)Y$ are the residuals from the regression of $\bf Y$ on $\bf X$