Maximum Likelihood Estimation

STA 721: Lecture 2

Merlise Clyde (clyde@duke.edu)

Duke University

Outline

- Likelihood Function
- Projections
- Maximum Likelihood Estimates

Readings: Christensen Chapter 1-2, Appendix A, and Appendix B

Normal Model

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

- $\mu \in \mathbb{R}^n$ (unknown, fixed)
- $\boldsymbol{\epsilon} \in \mathbb{R}^n$ unobservable error vector (random)

Usual assumptions?

- $E[\epsilon_i] = 0 \ \forall i \Leftrightarrow \mathsf{E}[\epsilon] = \mathbf{0} \quad \Rightarrow \mathsf{E}[\mathbf{Y}] = \boldsymbol{\mu}$ (mean vector)
- ϵ_i independent with $\mathsf{Var}(\epsilon_i) = \sigma^2$ and $\mathsf{Cov}(\epsilon_i, \epsilon_i) = 0$
- Matrix version $\mathsf{Cov}[\boldsymbol{\epsilon}] \equiv \left[(\mathsf{E}\left[(\epsilon_i \mathsf{E}[\epsilon_i])(\epsilon_j \mathsf{E}[\epsilon_j]) \right] \right]_{ij} = \sigma^2 \mathbf{I}_n \quad \Rightarrow \mathsf{Cov}[\mathbf{Y}] = \sigma^2 \mathbf{I}_n \text{ (errors are uncorrelated)}$
- $m{\epsilon}_i \stackrel{ ext{iid}}{\sim} \mathsf{N}(0,\sigma^2)$ implies that $Y_i \stackrel{ ext{ind}}{\sim} \mathsf{N}(\mu_i,\sigma^2)$

Likelihood Function

The likelihood function for $m{\mu}, \sigma^2$ is proportional to the sampling distribution of the data

$$egin{aligned} \mathcal{L}(oldsymbol{\mu},\sigma^2) &\propto \prod_{i=1}^n rac{1}{\sqrt{(2\pi\sigma^2)}} \exp{-rac{1}{2}iggl\{rac{(Y_i-\mu_i)^2}{\sigma^2}iggr\}} \ &\propto (2\pi\sigma^2)^{-n/2} \exp{iggl\{-rac{1}{2}rac{\sum_i(Y_i-\mu_i)^2)}{\sigma^2}iggr\}} \ &\propto (\sigma^2)^{-n/2} \exp{iggl\{-rac{1}{2}rac{\|\mathbf{Y}-oldsymbol{\mu}\|^2}{\sigma^2}iggr\}} \ &\propto (2\pi)^{-n/2}|\mathbf{I}_n\sigma^2|^{-1/2} \exp{iggl\{-rac{1}{2}rac{\|\mathbf{Y}-oldsymbol{\mu}\|^2}{\sigma^2}iggr\}} \end{aligned}$$

Last line is the density of $\mathbf{Y} \sim \mathsf{N}_n\left(oldsymbol{\mu}, \sigma^2 \mathbf{I}_n
ight)$

MLEs

Find values of $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood $\mathcal{L}(\mu,\sigma^2)$ for $\mu\in\mathbb{R}^n$ and $\sigma^2\in\mathbb{R}^+$

$$\mathcal{L}(oldsymbol{\mu}, \sigma^2) \propto (\sigma^2)^{-n/2} \exp\left\{-rac{1}{2}rac{\|\mathbf{Y} - oldsymbol{\mu}\|^2}{\sigma^2}
ight\} \ \log(\mathcal{L}(oldsymbol{\mu}, \sigma^2)) \propto -rac{n}{2} \log(\sigma^2) - rac{1}{2}rac{\|\mathbf{Y} - oldsymbol{\mu}\|^2}{\sigma^2}$$

or equivalently the log likelihood

- $oldsymbol{\cdot}$ Clearly, $\hat{oldsymbol{\mu}}=\mathbf{Y}$ but $\hat{\sigma}^2=0$ is outside the parameter space
- If $\mu = \mathbf{X}\boldsymbol{\beta}$, can show that $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$ is the MLE/OLS estimator of $\boldsymbol{\beta}$ and $\hat{\boldsymbol{\mu}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ if \mathbf{X} is full column rank.
- show via projections

Projections

take any point $\mathbf{y} \in \mathbb{R}^n$ and "project" it onto $C(\mathbf{X}) = \mathcal{M}$

- any point already in M stays the same
- so if ${f P_X}$ is a projection onto the column space of ${f X}$ then for ${f m}\in C({f X})$ ${f P_Xm=m}$
- $\mathbf{P}_{\mathbf{X}}$ is a linear transformation from $\mathbb{R}^n o \mathbb{R}^n$
- ullet maps vectors in \mathbb{R}^n into $C(\mathbf{X})$
- ullet if $\mathbf{z} \in \mathbb{R}^n$ then $\mathbf{P_X}\mathbf{z} = \mathbf{X}\mathbf{a} \in C(\mathbf{X})$ for some $\mathbf{a} \in \mathbb{R}^p$

(j) Example

For $\mathbf{X} \in \mathbb{R}^{n imes p}$, rank $p, \mathbf{P_X} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}$ is a projection onto the p dimensional subspace $m{\mathcal{M}} = C(\mathbf{X})$

Idempotent Matrix

What if we project a projection?

- $\bullet \ \mathbf{P}_{\mathbf{X}}\mathbf{z} = \mathbf{X}\mathbf{a} \in C(\mathbf{X})$
- $P_XXa = Xa$
- ullet since $\mathbf{P}^2_{\mathbf{X}}\mathbf{z}=\mathbf{P}_{\mathbf{X}}\mathbf{z}$ for all $\mathbf{z}\in\mathbb{R}^n$ we have $\mathbf{P}^2_{\mathbf{X}}=\mathbf{P}_{\mathbf{X}}$

▼ Definition: Projection

For a matrix \mathbf{P} in $\mathbb{R}^{n \times n}$ is a projection matrix if $\mathbf{P}^2 = \mathbf{P}$. That is all projections \mathbf{P} are idempotent matrix.

Exercise

For $\mathbf{X} \in \mathbb{R}^{n \times p}$, rank p, if $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}$ use the definition to show that it is a projection onto the p dimensional subspace $\mathcal{M} = C(\mathbf{X})$

Null Space

▼ Definition: Orthogonal Complement

The set of all vectors that are orthogonal to a given subspace \mathcal{M} is called the orthogonal complement of the subspace denoted as \mathcal{M}^{\perp} . Under the usual inner product, $\mathcal{M}^{\perp} \equiv \{\mathbf{n} \in \mathbb{R}^n \ni \mathbf{m}^T \mathbf{n} = 0 \text{ for } \mathbf{m} \in \mathcal{M} \}$

▼ Definition: Null Space

For a matrix ${f A}$, the *null space* of ${f A}$ is defined as $N({f A})=\{{f n}\ni{f A}{f n}={f 0}\}$

Exercise

Show that $C(\mathbf{X})^{\perp}$ (the orthogonal complement of $C(\mathbf{X})$) is the null space of \mathbf{X}^T , $N(\mathbf{X}^T)$.

Orthogonal Projection

▼ Definition: Orthogonal Projections

For a vector space $\mathcal V$ with an inner product $\langle \mathbf x, \mathbf y \rangle$ for $\mathbf x, \mathbf y \in \mathcal V$, $\mathbf x$ and $\mathbf y$ are orthogonal if $\langle \mathbf x, \mathbf y \rangle = 0$. A projection $\mathbf P$ is an *orthogonal projection* onto a subspace $\mathcal M$ of $\mathcal V$ if for any $\mathbf m \in \mathcal V$, $\mathbf P\mathbf m = \mathbf m$ and for any $\mathbf n \in \mathcal M^\perp$, $\mathbf P\mathbf n = \mathbf 0$.

The null space of ${f P}$ is the orthogonal complement of ${m {\cal M}}$

For \mathbb{R}^N with the inner product, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$, \mathbf{P} is an orthogonal projection onto \mathcal{M} if \mathbf{P} is a projection ($\mathbf{P}^2 = \mathbf{P}$) and it is symmetric ($\mathbf{P} = \mathbf{P}^T$)

Show that P_X is an orthogonal projection on C(X).

Decompsition

• For any $\mathbf{y} \in \mathbb{R}^n$, we can write it uniquely as a vector

$$\mathbf{y} = \mathbf{m} + \mathbf{n}, \quad \mathbf{m} \in \mathcal{M} \quad \mathbf{n} \in \mathcal{M}^{\perp}$$

- ullet write $\mathbf{y} = \mathbf{P}\mathbf{y} + (\mathbf{y} \mathbf{P}\mathbf{y}) = \mathbf{P}\mathbf{y} + (\mathbf{I} \mathbf{P})\mathbf{y}$
- claim that if ${f P}$ is an orthogonal projection, $({f I}-{f P})$ is an orthogonal projection onto ${m {\cal M}}^\perp$
- ullet if $\mathbf{n} \in \mathcal{M}^\perp$, then $(\mathbf{I} \mathbf{P})\mathbf{n} = \mathbf{n} \mathbf{P}\mathbf{n} = \mathbf{n}$

Back to MLEs

- ullet $\mathbf{Y}\sim \mathsf{N}(oldsymbol{\mu},\sigma^2\mathbf{I}_n)$ with $oldsymbol{\mu}=\mathbf{X}oldsymbol{eta}$ and \mathbf{X} full column rank
- ullet Claim: Maximum Likelihood Estimator (MLE) of $oldsymbol{\mu}$ is $\mathbf{P_XY}$
- Log Likelihood:

$$\log \mathcal{L}(oldsymbol{\mu}, \sigma^2) = -rac{n}{2} \mathrm{log}(\sigma^2) - rac{1}{2} rac{\|\mathbf{Y} - oldsymbol{\mu}\|^2}{\sigma^2}.$$

- ullet Decompose $\mathbf{Y} = \mathbf{P}_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} \mathbf{P}_{\mathbf{X}})\mathbf{Y}$
- ullet Use $\mathbf{P}_{\mathbf{X}} oldsymbol{\mu} = oldsymbol{\mu}$
- Simplify $\|\mathbf{Y} \boldsymbol{\mu}\|^2$

Expand

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{x}\mathbf{Y} - \mathbf{P}_{x}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - \mathbf{P}_{x})\mathbf{Y} + \mathbf{P}_{x}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - \mathbf{P}_{x})\mathbf{Y}\|^{2} + \|\mathbf{P}_{x}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}\mathbf{P}_{x}^{T}(\mathbf{I} - \mathbf{P}_{x})\mathbf{Y}$$

$$= \|(\mathbf{I} - \mathbf{P}_{x})\mathbf{Y}\|^{2} + \|\mathbf{P}_{x}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - \mathbf{P}_{x})\mathbf{Y}\|^{2} + \|\mathbf{P}_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

Crossproduct term is zero:

$$egin{aligned} \mathbf{P}_{\mathbf{X}}^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) &= \mathbf{P}_{\mathbf{X}}(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \ &= \mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}} \ &= \mathbf{P}_{\mathbf{X}} - \mathbf{P}_{\mathbf{X}} \ &= \mathbf{0} \end{aligned}$$

Log Likelihood

Substitute decomposition into log likelihood

$$\begin{split} \log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \\ &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_X}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right) \\ &= \underbrace{-\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}}_{= \text{ constant with respect to } \boldsymbol{\mu} \leq 0 \end{split}$$

- Maximize with respect to μ for each σ^2
- RHS is largest when $m{\mu} = \mathbf{P_XY}$ for any choice of σ^2

$$\hat{oldsymbol{\mu}} = \mathbf{P_XY}$$

is the MLE of $oldsymbol{\mu}$ (fitted values $\hat{\mathbf{Y}} = \mathbf{P_XY}$)

MLE of β

$$\mathcal{L}(oldsymbol{\mu}, \sigma^2) = -rac{n}{2} \mathrm{log}(\sigma^2) - rac{1}{2} igg(rac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + rac{\|\mathbf{P_X}\mathbf{Y} - oldsymbol{\mu}\|^2}{\sigma^2}igg).$$

Rewrite as likeloood function for β , σ^2 :

$$\mathcal{L}(oldsymbol{eta}, \sigma^2) = -rac{n}{2} \mathrm{log}(\sigma^2) - rac{1}{2} igg(rac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + rac{\|\mathbf{P_X}\mathbf{Y} - \mathbf{X}oldsymbol{eta}\|^2}{\sigma^2}igg)$$

Similar argument to show that RHS is maximized by minimizing

$$\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{eta}\|^2$$

• Therefore $\hat{\boldsymbol{\beta}}$ is a MLE of $\boldsymbol{\beta}$ if and only if satisfies

$$\mathbf{P}_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{oldsymbol{eta}}$$

• If $\mathbf{X}^T\mathbf{X}$ is full rank, the MLE of $\boldsymbol{\beta}$ is $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \hat{\boldsymbol{\beta}}$

MLE of σ^2

• Plug-in MLE of $\hat{m{\mu}}$ for $m{\mu}$

$$\log \mathcal{L}(\hat{oldsymbol{\mu}}, \sigma^2) = -rac{n}{2} \log \sigma^2 - rac{1}{2} rac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$

• Differentiate with respect to σ^2

$$rac{\partial \, \log \mathcal{L}(\hat{oldsymbol{\mu}}, \sigma^2)}{\partial \, \sigma^2} = -rac{n}{2} rac{1}{\sigma^2} + rac{1}{2} \| (\mathbf{I} - \mathbf{P_X}) \mathbf{Y} \|^2 igg(rac{1}{\sigma^2}igg)^2$$

Set derivative to zero and solve for MLE

$$egin{align} 0 &= -rac{n}{2}rac{1}{\hat{\sigma}^2} + rac{1}{2}\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2igg(rac{1}{\hat{\sigma}^2}igg)^2 \ rac{n}{2}\hat{\sigma}^2 &= rac{1}{2}\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \ \hat{\sigma}^2 &= rac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{n} \end{aligned}$$

MLE Estimate of σ^2

Maximum Likelihood Estimate of σ^2

$$egin{aligned} \hat{\sigma}^2 &= rac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{n} \ &= rac{\mathbf{Y}^T(\mathbf{I} - \mathbf{P_X})^T(\mathbf{I} - \mathbf{P_X})\mathbf{Y}}{n} \ &= rac{\mathbf{Y}^T(\mathbf{I} - \mathbf{P_X})\mathbf{Y}}{n} \ &= rac{\mathbf{e}^T\mathbf{e}}{n} \end{aligned}$$

where ${f e}=({f I}-{f P}_{f X}){f Y}$ are the *residuals* from the regression of ${f Y}$ on ${f X}$