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Normal Model
Take an random vector  which is observable and decomposeY ∈ Rn

Y = µ + ϵ

 (unknown, fixed)µ ∈ Rn

 unobservable error vector (random)ϵ ∈ Rn

Usual assumptions?

  (mean vector)E[ϵi] = 0 ∀i ⇔ E[ϵ] = 0 ⇒ E[Y] = µ

 independent with  and ϵi Var(ϵi) = σ2 Cov(ϵi, ϵj) = 0

Matrix version
 (errors

are uncorrelated)

Cov[ϵ] ≡ [(E [(ϵi − E[ϵi])(ϵj − E[ϵj])]]
ij = σ2In ⇒ Cov[Y] = σ2In

 implies that ϵi
iid∼ N(0, σ2) Yi

ind∼ N(µi, σ2)
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Likelihood Function
The likelihood function for  is proportional to the sampling distribution of the
data

µ, σ2

L(µ, σ2) ∝
n∏

i=1

1

√(2πσ2)
exp −

1
2

{ (Yi − µi)2

σ2
}

∝ (2πσ2)−n/2 exp {−
1
2

∑i(Yi − µi)2)
σ2

}
∝ (σ2)−n/2 exp {−

1
2

∥Y − µ∥2

σ2
}

∝ (2π)−n/2|Inσ2|−1/2 exp {−
1
2

∥Y − µ∥2

σ2
}

Last line is the density of Y ∼ Nn (µ, σ2In)
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MLEs
Find values of  and  that maximize the likelihood  for  and

or equivalently the log likelihood

µ̂ σ̂2 L(µ, σ2) µ ∈ Rn

σ2 ∈ R+

L(µ, σ2) ∝ (σ2)−n/2 exp {−
1
2

∥Y − µ∥2

σ2
}

log(L(µ, σ2)) ∝ −
n

2
log(σ2) −

1
2

∥Y − µ∥2

σ2

Clearly,  but  is outside the parameter spaceµ̂ = Y σ̂2 = 0

If , can show that  is the MLE/OLS estimator of  and

 if  is full column rank.

µ = Xβ β̂ = (XT X)−1XT Y β

µ̂ = Xβ̂ X
show via projections
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Projections
take any point  and “project” it onto y ∈ Rn C(X) = M

any point already in  stays the sameM

so if  is a projection onto the column space of  then for PX X m ∈ C(X)
PXm = m

 is a linear transformation from PX Rn → Rn

maps vectors in  into Rn C(X)
if  then  for some z ∈ Rn PXz = Xa ∈ C(X) a ∈ Rp

For , rank ,  is a projection onto the  dimensional subspace 

Example

X ∈ Rn×p p PX = X(XT X)−1X p M = C(X)
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Idempotent Matrix
What if we project a projection?

PXz = Xa ∈ C(X)
PXXa = Xa
since  for all  we have P2

Xz = PXz z ∈ Rn P2
X = PX

Definition: Projection

For a matrix  in  is a projection matrix if . That is all projections  are
idempotent matrix.

P Rn×n P2 = P P

For , rank , if  use the definition to show that it is a projection onto the 

dimensional subspace 

Exercise

X ∈ Rn×p p PX = X(XT X)−1X p
M = C(X)
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Null Space
Definition: Orthogonal Complement

The set of all vectors that are orthogonal to a given subspace  is called the
orthogonal complement of the subspace denoted as . Under the usual inner
product, 

M
M⊥

M⊥ ≡ {n ∈ Rn ∋ mT n = 0 for m ∈ M}

Definition: Null Space

For a matrix , the null space of  is defined as A A N(A) = {n ∋ An = 0}

Show that  (the orthogonal complement of ) is the null space of , .

Exercise

C(X)⊥ C(X) XT N(XT )
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Orthogonal Projection
Definition: Orthogonal Projections

For a vector space  with an inner product  for ,  and  are
orthogonal if . A projection  is an orthogonal projection onto a subspace

 of  if for any ,  and for any , .

The null space of  is the orthogonal complement of 

V ⟨x, y⟩ x, y ∈ V x y
⟨x, y⟩ = 0 P

M V m ∈ V Pm = m n ∈ M⊥ Pn = 0
P M

For  with the inner product, ,  is an orthogonal projection onto 
if  is a projection ( ) and it is symmetric ( )

RN ⟨x, y⟩ = xT y P M
P P2 = P P = PT

Show that  is an orthogonal projection on .

Exercise

PX C(X)
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Decompsition
For any , we can write it uniquely as a vectory ∈ Rn

y = m + n, m ∈ M n ∈ M⊥

write y = Py + (y − Py) = Py + (I − P)y
claim that if  is an orthogonal projection,  is an orthogonal projection ontoP (I − P)
M⊥

if , then n ∈ M⊥ (I − P)n = n − Pn = n
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Back to MLEs
 with  and  full column rankY ∼ N(µ, σ2In) µ = Xβ X

Claim: Maximum Likelihood Estimator (MLE) of  is µ PXY
Log Likelihood:

log L(µ, σ2) = −
n

2
log(σ2) −

1
2

∥Y − µ∥2

σ2

Decompose Y = PXY + (I − PX)Y
Use PXµ = µ

Simplify ∥Y − µ∥2
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Expand
∥Y − µ∥2 = ∥(I − PX)Y + PxY − µ∥2

= ∥(I − PX)Y + PxY − PXµ∥2

= ∥(I − Px)Y + PX(Y − µ)∥2

= ∥(I − Px)Y∥2 + ∥PX(Y − µ)∥2 + 2(Y − µ)T PT
X(I − PX)Y

= ∥(I − Px)Y∥2 + ∥PX(Y − µ)∥2 + 0
= ∥(I − Px)Y∥2 + ∥PXY − µ∥2

Crossproduct term is zero:

PT
X(I − PX) = PX(I − PX)

= PX − PXPX

= PX − PX

= 0
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Log Likelihood
Substitute decomposition into log likelihood

log L(µ, σ2) = −
n

2
log(σ2) −

1
2

∥Y − µ∥2

σ2

= −
n

2
log(σ2) −

1
2

( ∥(I − PX)Y∥2

σ2
+

∥PXY − µ∥2

σ2
)

= −
n

2
log(σ2) −

1
2

∥(I − PX)Y∥2

σ2
+ −

1
2

∥PXY − µ∥2

σ2

=  constant with respect to µ ≤ 0
 

Maximize with respect to  for each µ σ2

RHS is largest when  for any choice of 

is the MLE of  (fitted values )

µ = PXY σ2

∴ µ̂ = PXY

µ Ŷ = PXY
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MLE of β
L(µ, σ2) = −

n

2
log(σ2) −

1
2

( ∥(I − PX)Y∥2

σ2 +
∥PXY − µ∥2

σ2
)

Rewrite as likeloood function for :β, σ2

L(β, σ2) = −
n

2
log(σ2) −

1
2

( ∥(I − PX)Y∥2

σ2
+

∥PXY − Xβ∥2

σ2
)

Similar argument to show that RHS is maximized by minimizing

∥PXY − Xβ∥2

Therefore  is a MLE of  if and only if satisfiesβ̂ β

PXY = Xβ̂

If  is full rank, the MLE of  is XT X β (XT X)−1XT Y = β̂
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MLE of σ2
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Plug-in MLE of  for µ̂ µ

log L(µ̂, σ2) = −
n

2
log σ2 −

1
2

∥(I − PX)Y∥2

σ2

Differentiate with respect to σ2

∂ log L(µ̂, σ2)
∂ σ2

= −
n

2
1

σ2
+

1
2

∥(I − PX)Y∥2( 1
σ2

)2

Set derivative to zero and solve for MLE

0 = −
n

2
1

σ̂2
+

1
2

∥(I − PX)Y∥2( 1
σ̂2

)2

n

2
σ̂2 =

1
2

∥(I − PX)Y∥2

σ̂2 =
∥(I − PX)Y∥2

n



MLE Estimate of 
Maximum Likelihood Estimate of 

where  are the residuals from the regression of  on 

σ2
σ2

σ̂2 =
∥(I − PX)Y∥2

n

=
YT (I − PX)T (I − PX)Y

n

=
YT (I − PX)Y

n

=
eT e

n

e = (I − PX)Y Y X
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